
i3

Think inside the box

Intelligent Control Station
i3 IEC-61131 Tutorial

http://www.imopc.com/

Contents
TABLE OF CONTENTS .. 1

SAFETY GUIDELINES .. 3

Safety Warnings and Guidelines .. 3
Grounding .. 4

IEC 61131 LOGIC ... 5
IEC Users Guide .. 5
Languages .. 96
Function Blocks ... 149

LOGIC MODULES... 428
IEC Modules .. 429

RECIPES .. 442
Overview .. 442
Creating a Recipe .. 443
Recipe Editor ... 443
Recipe Editor ... 444
Editing Ingredient Properties .. 445
Editing Recipe Data ... 447
Renaming Products .. 447
Auto Allocate Ingredient Register .. 447
Editing Current Recipe .. 448
Configuring Product Register .. 448

USING SETPOINTS ... 450
Editing the Setpoints .. 452
Formatting Setpoints .. 452
Transferring and Verifying Values with the Controller 453
Setpoint Tables, Setpoint Values, Uploading and Downloading 453
Printing the Setpoints ... 454

HOW TO CHECK A PROGRAM FOR ERRORS .. 455
Error and Warning List ... 456

PRINT SETUP DIALOG ... 457
CLEARING THE CONTROLLER MEMORY .. 459

Information in this document is subject to change without notice and does not
represent a commitment on the part of IMO Precision Controls.

www.imopc.com 2

http://www.imopc.com/

SAFETY GUIDELINES

Safety Warnings and Guidelines

When found on the product, the following symbols specify:

a. All applicable codes and standards need to be followed in the installation of
this product.

 Warning: Consult user documentation. Warning: Electrical Shock Hazard.

WARNING – EXPLOSION HAZARD – Do not disconnect equipment unless power has been switched off or the area is
known to be non-hazardous

WARNING: To avoid the risk of electric shock or burns, always connect the safety (or earth) ground before making any
other connections.

WARNING: To reduce the risk of fire, electrical shock, or physical injury it is strongly recommended to fuse the voltage
measurement inputs. Be sure to locate fuses as close to the source as possible.

WARNING: Replace fuse with the same type and rating to provide protection against risk of fire and shock hazards.

WARNING: In the event of repeated failure, do not replace the fuse again as a repeated failure indicates a defective
condition that will not clear by replacing the fuse.

WARNING – EXPLOSION HAZARD – Substitution of components may impair suitability for Class I, Division 2

WARNING - The USB parts are for operational maintenance only. Do not leave permanently connected unless area is
known to be non-hazardous

WARNING – EXPLOSION HAZARD - BATTERIES MUST ONLY BE CHANGED IN AN AREA KNOWN TO BE
NON-HAZARDOUS

WARNING - Battery May Explode If Mistreated. Do Not Recharge, Disassemble or Dispose of in Fire

WARNING: Only qualified electrical personnel familiar with the construction and operation of this equipment and the
hazards involved should install, adjust, operate, or service this equipment. Read and understand this manual and other
applicable manuals in their entirety before proceeding. Failure to observe this precaution could result in severe bodily
injury or loss of life.

www.imopc.com 3

http://www.imopc.com/

b. For I/O wiring (discrete), use the following wire type or equivalent: Belden
9918, 18 AWG or larger.

Adhere to the following safety precautions whenever any type of connection is made
to the module.

a. Connect the green safety (earth) ground first before making any other
connections.

b. When connecting to electric circuits or pulse-initiating equipment, open their
related breakers. Do not make connections to live power lines.

c. Make connections to the module first; then connect to the circuit to be
monitored.

d. Route power wires in a safe manner in accordance with good practice and
local codes.

e. Wear proper personal protective equipment including safety glasses and
insulated gloves when making connections to power circuits.

f. Ensure hands, shoes, and floor is dry before making any connection to a power
line.

g. Make sure the unit is turned OFF before making connection to terminals.
Make sure all circuits are de-energized before making connections.

h. Before each use, inspect all cables for breaks or cracks in the insulation.
Replace immediately if defective.

Grounding

Grounding is covered in various chapters within this manual.

www.imopc.com 4

http://www.imopc.com/

IEC 61131 Logic

IEC Users Guide

IEC 61131-3 Programming Environment
i³ Configurator v9.0 supports integrated editing environment for working with IEC
programs. This feature allows creating, editing and debugging IEC programs within i³
Configurator main window.

A new configuration option ' Supported Program Types' has been added under Tools |
Application Settings. This option allow users to create new programs in Advanced
Ladder or IEC Editor or both.

If only ‘Support IEC Editor Programs’ option is checked any new program created
will automatically be an IEC program.

If both ‘Support Advanced Ladder Programs’ and ‘Support IEC Editor Programs’
option is checked the type of any new program created will be configurable by the
user.

In each case, opening an existing program will open it in its original mode with the
appropriate editors enabled.

Integrated editing environment
Data types
Access to a bit in an integer

www.imopc.com 5

http://www.imopc.com/

The Main Window
The below dialog shows the workspace windows used when editing IEC programs.
Individual component windows can be enabled/disabled by selecting them in the
Tools Menu.

The following are the component windows:

1. Project Navigator: Similar in function to the Advanced Ladder Project
Navigator

2. Project (IEC) Toolbox: Similar in function to the Advanced Ladder Project
Toolbox

3. Program Variables: Lists out Variables used in the various IEC modules
4. Defines Window: A window in which constant values can be assigned or

picked – includes system constants
5. Project Output Window: A window in which list of the errors in the last

compilation are shown
6. Logic Editing Area

The following user interface items are used with the IEC editor:

Tools Menu - Various component windows can be enabled/disabled from this
menu.

www.imopc.com 6

http://www.imopc.com/

IEC Editor logic modules toolbar can be used to create new logic blocks.

www.imopc.com 7

http://www.imopc.com/

Declaring Variables

Program Variables Window
The IEC Program Variables window contains a list of the variables used in the IEC
Programming section.

To open Program Variables window, enable Tools | Program Variables. This
opens the following dockable Program Variables window.

The columns of the Program Variables window can be made visible or invisible
according to the requirement.

Double clicking on icon to bring up the following dialog. Here the individual
columns can be made visible or invisible by checking or unchecking the individual
check box. The width of each column and its position can also be set here.

www.imopc.com 8

http://www.imopc.com/

Using the grid: Each variable is described with:
Creating New Variables
Using the Editing Grid
Sorting Variables of a Group
Editing as Text
Bookmarks

• Name
• Data Type and a Dimension
• Attribute
• Initial Value
• Tag and a Description Text

www.imopc.com 9

http://www.imopc.com/

Attributes of a Variable
Each variable have an attribute displayed in the corresponding column of the grid. For
each internal variable, you can select the "Read Only". Otherwise, the "attribute"
column of an internal variable is empty. Parameters of UDFBs are marked as either
"IN" or "OUT".

To change the attribute of an internal variable, enable the modification mode in the
grid and move the cursor to the selected "attribute" cell. Then press ENTER to set or
reset the "Read Only" attribute.

www.imopc.com 10

http://www.imopc.com/

Creating New Variables
Hit INSERT key in the Program Variables Window to create a new variable in the
selected group. The variable is added at the end of the group. Variables are created
with a default name. You can rename a new variable or change its attribute using the
variable editing grid.

In case of a group corresponding to local variables of a UDFB, pressing the INSERT
key gives you the choice between:

• adding an "IN" (input) parameter
• adding an "OUT" (output) parameter
• adding a private variable

IN and OUT parameters always appear at the beginning of a UDFB group.

www.imopc.com 11

http://www.imopc.com/

Defining Structures
To create a new type of data structure, right click in the program variables window
and select Add Structure.

Each structure is represented as a group in the window. Enter the members of the
structure in its group in the same way you enter variables in another group. New data
structures are created with default name. Use right click option "Rename' to change its
name.

An instance of the structure can be created within another structure if the structure is
already defined.

www.imopc.com 12

http://www.imopc.com/

Initial Value of a Variable
A variable may have an initial value. The value must be a valid constant expression
that fits to the data type of the variable. The initial value is displayed in red if it is not
a valid expression for the selected data type.

There is no initial value for arrays and instances of function blocks.

To change the initial value of a variable, enable the modification mode in the grid and
move the cursor to the selected "init value" cell. Then press ENTER to enter the new
value.

www.imopc.com 13

http://www.imopc.com/

Naming a Variable
To change the name of the variable, enable the modification mode in the grid and
move the cursor to the selected "name" cell. Then press ENTER or hit the first
character of the new name. Name is entered in a small box. Hit ENTER to validate the
name or ESCAPE to cancel the change.

A variable must be identified by a unique name within its parent group. The variable
name cannot be a reserved keyword of the programming languages and cannot have
the same name as a standard or "C" function or function block. A variable should not
have the same name as a program or a user defined function block.

The name of a variable should begin by a letter or an underscore ("_") mark, followed
by letters, digits or underscore marks. It is not allowed to put two consecutive
underscores within a variable name. Naming is case insensitive. Two names with
different cases are considered as the same.

www.imopc.com 14

http://www.imopc.com/

Sorting Variables
At any moment you can sort variables of a group according to their name, type or
dimension. For that you simply need to:

1. move the cursor to the header of the group
2. click on the name of the wished column

i³ Configurator always keeps the original order of declared variables. Each time you
insert a new variable or expand/collapse a group, the original sorting is re-applied.

www.imopc.com 15

http://www.imopc.com/

Variable Tag and Description
i³ Configurator enables you to freely enter for each variable two attributes that
describe the variable:

• The "Tag" is the address of the variable that can be displayed together with the
variable name in graphic languages. The variable address is associated with the
Memory Area of the i³.

• The "Description" is a long comment text that describes the variable.

To change the tag or description of a variable, enable the modification mode in the
grid and move the cursor to the corresponding cell. Then press ENTER to enter the
new text.

www.imopc.com 16

http://www.imopc.com/

Variable Data Type and Dimension
To change the type and dimension of the variable, enable the modification mode in
the grid and move the cursor to the appropriate cell and press ENTER.

Each variable must have a valid data type. It can be either a basic data type or a type
of function block or UDFB.

If the selected data type is STRING, you must specify a maximum length, and cannot
exceed 255 characters.

Arrays: you can specify dimension(s) for an internal variable, in order to declare an
array. Arrays have at most 3 dimensions. All indexes are 0 based. For instance, in case
of single dimension array, the first element is always identified by ArrayName[0].
You cannot declare arrays of function block instances. The total number of items in an
array (merging all dimensions) cannot exceed 65535.

Using the Program Variables Window, you must enter integer dimensions separated
by comas. For instance:

 3,10,5

www.imopc.com 17

http://www.imopc.com/

Variable List - Active Grid
Hit SPACE bar to enable or disable the active grid.

The Program Variables Window enables you to enter information in each cell of the
active grid. At any moment, the active grid can be activated (each cell can be edited
independently) or disabled (full row is highlighted) by selecting the variable and
pressing space. It can also be done through the 'Enable Changes' right click option of
the selected variable.

Press the ENTER key when the grid is inactive to open the variable setting box.

At any time you can drag with the mouse column separators in the main grid header
for resizing columns.
Press the following keys for browsing groups of variables:

Ctrl + Page Up Move the selection to the head of the previous group
Ctrl + Page Down Move the selection to the head of the following group

www.imopc.com 18

http://www.imopc.com/

Editing Variables as Text

Editing Variables as Text
As an alternative to the user friendly grid for editing variables, it is possible to declare
variables as text. Text editing applies to all the variables of a group. During text
editing, the group and all its variables are locked in the grid so that no change can be
entered from other windows.

Sereval syntaxes are available for describing variables:

IEC61131-3 The original IEC61131-3 syntax for declaring variables
XML tags An easy XML structure using tags and attributes
CSV CSV format (separator: semicolon)

To edit a group of variables as text, select the group in the program variables window.
Right click and select 'Edit Variables as text'.

The Program Variables window goes blank and Logic editing area shows 3 tabs
namely IEC format, XML format and CSV format. Select the tab in which you want
to add variables.

On pressing ' ' in the logic editing area, will ask you if you wish to save. If the
variables are saved, the same will be shown in Program Variables window.

To edit a group of variable as text, select the corresponding tab ("IEC", "XML" ou
"CSV") at the bottom of the editing window, and then double click on the group name
in the explorer pane.

www.imopc.com 19

http://www.imopc.com/

Editing Variables as Text Using IEC61131-3 Syntax
Using IEC61131-3 syntax, variables are declared within structured blocks. Each
blocks begins with "VAR", "VAR_INPUT", "VAR_OUTPUT" or
"VAR_EXTERNAL" keyword and ending with "END_VAR" keyword (with no
semicolon after). Below is the meaning of each keyword:

VAR Memory variables. Can be global, local or RETAIN depending on the
edited group

VAR_INPUT Input parameters of a block. Available only when the edited group is a
UDFB.

VAR_OUTPUT Output parameters of a block. Available only when the edited group is a
UDFB.

VAR_EXTERNAL External variables. Can be global or local depending on the edited group

Basic Syntax for Declaring a Variable:
To declare a variable, simply enter its symbol, followed by ":" and its data type. If the
data type is STRING, it must be followed the maximum length between parenthesis.
Example:

MyVar : BOOL;
MyString : STRING(255);

To indicate that a variable has the "read only" attribute, insert the "CONSTANT "
keyword at the beginning of the variable declaration:

CONSTANT VarName : DataType;

To declare an array, the data type must be preceeded by "ARRAY [dimensions] OF".
There are at most 3 dimensions, separated by comas. Each dimension is specified as
"0 .. MaxBound". Below are examples:

Array1 : ARRAY [0 .. 99] OF DINT;
Matrix : ARRAY [0 .. 9, 0 .. 9, 0 .. 9] OF REAL;

Additionaly, you can specify an initial value for single variables. The initial value is
entered after the data type, and is preceeded by ":=". The initial value must be a valid
constant expression that fits the data type.

Examples:

MyBool : BOOL := TRUE;
MyString : STRING(80) := 'Hello';
MyLongReal : LREAL := lreal#1.0E300;

Additional Information and Description Texts:

www.imopc.com 20

http://www.imopc.com/

As a variable may have additional properties and comment texts in i³ Configurator,
we use special directives entered as IEC comments AFTER the declaration of the
variable, to specify additional info. The following directives are available:

(*$tag=Text*) Variable tag (short comment)
(*$desc=Text*) Variable description

You can also use "//" single line comments to enter the directives:

//$tag=Text
//$desc=Text

www.imopc.com 21

http://www.imopc.com/

Editing Variables as XML Tags
You can describe variable using a simple XML structure, where each variable is
described as an XML tag. The file must fit the baisc XML syntax. Values of tag
attributes must be entered between double quotes. Characters < > " ' & are reserved to
XML and cannot appear in values of tag attributes. Instead you should use the
following sequences:

< <
> >
" "
' '
& &

Below is the tag structure for variable declaration:

<k5project>
 |
 +-<vargroup>
 |
 +-<var>*
 |
 +-<varinfo>*

(the "*" mark indicates that the tag can appear 0 or more times)

The rest of this page describes the format and meaning of each tag:

<k5project>

This tag must be entered at the top level and is unique. It is reserved for extensions
(enhancement of the XML structure), and specifies the version of the syntax. Its
attributes are:

version Reserved for future extensions.
This attribute is mandatory and must be be "1.0".

The <K5Project> tag contains one <vargroup> tag.

<vargroup>

This tag must appear with the <K5Project>, and contains all <var> tags for variables
of the group. In this version, the tag has no attribute (the name of the group is
implicit)

<var>

www.imopc.com 22

http://www.imopc.com/

This tag describes the basic definition of one variable. Its attributes are:

name Symbol of the variable.
This attribute is mandatory.

type Name of the data type of the variable
This attribute is mandatory

len
Maximum length if the data type is STRING.
This attribute is mandatory for STRING variables, and should not
appear for other data types.

dim
Dimension(s) if the variable is an array.
There are at most 3 dimensions, seperated by comas.
This attribute is optional.

attr

Attributes of the variable, separated by comas. Possible values are:
IN : this is an INPUT parameter (for UDFBs only)
OUT : this is an OUTPUT parameter (for UDFBs only)
external : this is an external variable
constant : variable is read only
This attribute is optional.

init
Initial value of the variable
Must be a valid constant expression that fits the data type
This attribute is optional

The <var> tag contains zero or more <varinfo> tags.

<varinfo>

This tag indicates an additional info for the variable it belongs to. Its attributes are:

type

Type of information contained in the "data" attribute.
Possible values are:
tag : variable tag (short comment)
desc : description
This attribute is mandatory.

data Data specified by the "type" attribute, in text format.
This attribute is mandatory

www.imopc.com 23

http://www.imopc.com/

Editing variables as text in CSV format
Using CSV format, each variable is defined on one line of text. Each component of
the variable definition is entered as one CSV element. CSV elements are separated by
semi-colons. Each element is written between double quotes. A double quote within
an element is represented by two double quotes. CSV format is an easy way to
exchange variable declaration with Spreadsheet applications.

It is not mandatory that all elements (all columns) appear in the text. The first line
must contain the list of columns used, using the following keywords:

name variable symbol
this item is mandatory

type name of the data type
this item is mandatory, and must appear before len, dim and init columns

len string length if the data type is STRING
this item must be empty for other data types

dim dimensions in case of an array
there are at most 3 dimensions, separated by comas

attr

attribute of the variable, can be:
IN : input parameter of a UDFB
OUT : output parameter of a sub-program
external : extern variable

RO if "YES" indicates that the variable has the read-only attribute
(note: you can also use "TRUE" or "1" value)

init initial value of the variable
must be a valid constant expression that fits the data type

tag tag (short description text)
desc description text

Below is an example of CSV text for the declaration of 3 variables, with some
columns missing:

"name","type","len","attr","RO"
"MyVar","BOOL","","","NO"
"ExtVar","DINT","","external","YES"
"MyStr","STRING","10","","NO"

www.imopc.com 24

http://www.imopc.com/

Editing Programs

Editing Programs
The Programming environment provide language dedicated editors for:

Sequential Function Chart (SFC)
Function Block Diagram (FBD)
Ladder Diagram (LD)
Structure Text (ST)
Instruction List (IL)

Please refer to the following topics for common features:

Selecting function blocks
Selecting variables and instances
Quick Search
Bookmarks

The editor provides you the ideal programming environment with drag and drop
features:

• drag a variable from the list to the program to insert it
• drag a definition to the program to insert its name
• drag a block in the program to insert it
• drag a function block to the variable list to declare an instance
• drag a variable from the program or from the variable list to the spy list
• double click on a line of the output window to highlight the corresponding

code...

www.imopc.com 25

http://www.imopc.com/

SFC Editor

Sequential Function Charts (SFC) Editor
The SFC editor is a powerful graphical tool that enables you to enter and manage
Sequential Function Charts according to the IEC 61131-3 standard. The editor
supports advanced graphic features such as drag and drop, so that you can rapidly and
freely arrange the elements of your diagram. It also supports automatic chart
formatting when inserting or deleting items and thus enables quick input using the
keyboard.

SFC Diagram components: Related Sections:

Steps
Transitions
Divergences
Parallel branches
Jump to a step
Macro steps
Actions
Conditions

Using the SFC toolbar
Drawing divergences
Viewing the chart
Moving or copying parts of the chart
Entering macro-steps
Renumbering steps and transitions
Entering actions of a step
Entering condition of a transition
Notes for steps and transitions
Bookmarks

www.imopc.com 26

http://www.imopc.com/

Tips:

• To change the number of a step, transition or jump, select it and hit
Ctrl+ENTER keys.

• Hit SPACE bar on the main corner (on the left) of a divergence or
convergence to set double/single horizontal line style.

www.imopc.com 27

http://www.imopc.com/

Using the SFC Toolbar
The vertical toolbar on the left side of the editor contains buttons for inserting items in
the chart. Items are always inserted before the selected item. The chart is
automatically re-arranged when a new item is inserted.

Use the following keyboard commands when an item is selected:

• ENTER: edit the level 2 of a step or transition
• Ctrl+ENTER: change the number of a step, transition or jump

The last button of the toolbar enables you to switch between possible displays:

Swap between possible overviews of level 2 in the level 1 chart:
• display code of actions and conditions
• display notes attached to steps and transitions

www.imopc.com 28

http://www.imopc.com/

Drawing SFC Divergences
When using the SFC editor, you just need to place items in the grid. The editor
calculates and draws lines automatically to link steps, transitions and jumps you place
in the chart.

The same method is used for drawing divergences: you just need to place the
"corners" that identifies divergences, convergences and branches. The editor takes
care of drawing vertical and horizontal lines. Use the following buttons in the SFC
toolbar:

Insert the main (left side) corner of a divergence or convergence

Insert a divergence corner

Insert a convergence corner
Important Note:

Divergences are always
drawn from the left to the
right. The first branch, on
the left, contains the
"corners" that identify the
divergence. It must be
aligned with the preceeding
step or transition:

How to Proceed:
1. Insert the main corner (on the left side branch) of the divergence and the

convergence
2. Insert corners at the top of each branch (divergence)
3. Insert corners at the bottom of the branches where a divergence is wished

Simple or Double Divergence Lines:
You can change the drawing of a divergence or convergence horizontal line, for
drawing simple or double lines according to SFC definition. To do that, move the
selection on the main corner (on the left) and hit the SPACE bar.

www.imopc.com 29

http://www.imopc.com/

Viewing SFC Charts
The chart is entered in a logical grid. All objects are snapped to the grid.

At any moment you can use the commands of the "View" menu for zooming in or out
the edited chart. You also can press the [+] and [-] keys of the numerical keypad for
zooming the diagram in or out.

You also can drag the separation lines in vertical and horizontal rulers to freely resize
the cells of the grid:

The SFC editor adjusts the size of the font according to the zoom ratio. When cells are
wide enough, a text overview with the contents of the step or transition (level 2). The
last button of the toolbar enables you to switch between possible displays:

Swap between possible overviews of level 2 in the level 1 chart:
• display code of actions and conditions
• display notes attached to steps and transitions

www.imopc.com 30

http://www.imopc.com/

Moving and Copying SFC Charts
The SFC editor fully supports drag and drop for moving or copying items. To move
items, select them and simply drag them to the desired position.

To copy items, you may do the same, and just press the CONTROL key while
dragging. It is also possible to drag pieces of charts from a program to another if both
are open and visible on the screen.

At any moment while dragging items you can press ESCAPE to cancel the operation.

Alternatively, you can use classical Copy / Cut / Paste commands from the Edit menu.
Paste is performed at the current position.

Steps to be followed to perform Drag/Drop Operation in IEC Program’s SFC Editor:

Step 1: Open the SFC Logic Module Editor whose logic has to be moved/copied.

Step 2: Select the logic section to be moved/copied.

www.imopc.com 31

http://www.imopc.com/

Step 3: Bring the mouse cursor on the selection area and hold left mouse button in
pressed state for couple of seconds until the selected area’s background color changes
and the cursor’s shape changes.

Step 4: With the mouse’s left mouse button in pressed state move the mouse to move
the selection to desired area.

www.imopc.com 32

http://www.imopc.com/

After releasing the mouse, the copy of the selected area must be placed in the desired
location:

If the selection is to be copied, the hold the CONTROL Key in pressed state while
moving and releasing the left mouse button.

www.imopc.com 33

http://www.imopc.com/

With the mouse’s left mouse button in pressed state move the mouse to move the
selection to desired area.

After releasing the mouse, the copy of the selected area must be placed in the desired
location:

www.imopc.com 34

http://www.imopc.com/

Steps to be followed to while copying SFC Module’s Logic section that has Jump
Block included in the selection:
Improper Selection
Selected area does not include Step#1 which the Jump block is referring to.

As a result, after Copy/Paste, Jump block's Jump value does not get updated.

Proper Selection:
Selected area includes the block to which the Jump block is referring to.

As a result, when a Copy/Paste operation is done, the Jump value is also updated

www.imopc.com 35

http://www.imopc.com/

www.imopc.com 36

http://www.imopc.com/

Entering SFC macro-steps
A macro step is a special symbol that represents, within a SFC chart, a part of the
chart that begins with a step and ends with a step. The body of the macro-step must be
declared in the same program. The body of a macro-step begins with a special "begin"
step with no link before, and ends with a special "end" step with no link after. The
symbol of the macros step in the main chart has double horizontal lines.

Use the following buttons of the SFC toolbar for entering macro-steps:

Insert a macro-step

Insert the body of a macro-step

Important note: The symbol of the macro-step and the beginning step of its body must
have the same number.

Hit Ctrl+ENTER when a macro-step symbol or a beginning step is selected to change
its number.

www.imopc.com 37

http://www.imopc.com/

Renumbering Steps and Transitions
Each step or transition is identified by a number. A jump to a step is also identified by
the number of the destination step. The SFC editor allocates a new number to each
step or transition inserted in the chart.

To change the number of a step, transition or jump, select it and hit Ctrl+ENTER
keys.

It is not possible to change the number of a step or a transition if its level 2 is
currently open for editing. The number is used for identifying the step or transition in
the level 2 editing window.

In compiler reports, a step is identified by its number prefixed by "GS". A transition is
identified by its number prefixed by "GT".

www.imopc.com 38

http://www.imopc.com/

Entering Actions of a Step
Actions and notes attached to a step (level 2) are entered in a separate window. To
open the level 2 editing window of a step or transition, double click on its symbol in
the chart, or select it and hit ENTER.

The level 2 editing window proposes 4 views for entering different types of level 2
information:

• simple actions entered as text
• P1 actions than can be programmed in ST/IL text, LD or FBD
• N actions than can be programmed in ST/IL text, LD or FBD
• P0 actions than can be programmed in ST/IL text, LD or FBD
• text notes

Use the tab buttons in the level 2 editing window for selecting a view:

The condition for Steps and Transitions of IEC SFC Editor can be made in the
embedded conditions editor tab.

The editor for preferred condition of a step can be accessed by clicking the
appropriate toolbar button.

The condition Action – as described in Action tab, P1 – Rising Edge, N – Every cycle,
P0 – Falling Edge will be available for Steps. These conditions will be executed when
the Step is activated. The descriptions are displayed in the box next to each step.

Action Condition – Only ST Language is Allowed.
P1 Condition: ST/FBD/LD Languages are allowed
N Condition: ST/FBD/LD Languages are allowed
P0 Condition: ST/FBD/LD Languages are allowed.

www.imopc.com 39

http://www.imopc.com/

The default setting of language used to edit conditions of a step or transition is set to
ST Language. In order to change the type of language for a step, you can select it
from the Edit menu.

Note: The language can be changed for a condition only if the condition contents are
empty.

When editing P1, N or P0 actions, use the "Edit / Set Language" menu command to
select the programming language. This command is not available if the action block is
not empty.

The first view ("Action") contains all simple actions to control a boolean variable or a
child SFC chart. However, it is possible to directly enter action blocks programmed in
ST together with other actions in this view. Use the following syntax for entering ST
action blocks in the first pane:

 ACTION (qualifier) :
 statements...
 END_ACTION;

Where qualifier is "P1", "N" or "P0".

www.imopc.com 40

http://www.imopc.com/

Entering the Condition of a Transition
The condition and notes attached to a transition (level 2) are entered in a separate
window. To open the level 2 editing window of a step or transition, double click on its
symbol in the chart, or select it and hit ENTER.

The level 2 editing window proposes 2 views for entering different types of level 2
information:

• condition programmed in ST/IL text or LD
• text notes

Use the tab buttons in the level 2 editing window for selecting a view:

The languages that can be used to edit the conditions for a step or transition can be
modified if that condition supports multiple languages.

The description Condition will be available only for Transitions. The descriptions are
displayed in the box next to each step and transition.

Transition Condition: ST/LD Languages are allowed

Note: Only ST Language is allowed

The default setting of language used to edit conditions of a step or transition is set to
ST Language. In order to change the type of language for a step, you can select it
from the Edit menu.

Note: The language can be changed for a condition only if the condition contents are
empty.

When editing the condition , use the "Edit / Set Language" menu command to select
the programming language.

This command is not available if the condition is not empty. FBD cannot be used to
program a condition.

www.imopc.com 41

http://www.imopc.com/

Entering Notes for Steps and Transitions
The SFC editor supports the definition of text notes for each step and transition. The
notes are entered in the level2 editing window of steps and transitions. Refer to the
following topics for further information about the level 2 editing window:

• Entering Level 2 for steps
• Entering Level 2 for transitions

Notes can be displayed in the chart. The last button of the toolbar enables you to
switch between possible displays:

Swap between possible overviews of level 2 in the level 1 chart:
• display code of actions and conditions
• display notes attached to steps and transitions

Notes have no meaning for the execution of the chart. Entering notes for steps and
transitions enables you to enhance the auto-documentation of your programs. It also
provides an easy way to write and exchange specifications of an SFC program before
actions and conditions are programmed.

www.imopc.com 42

http://www.imopc.com/

Viewing SFC Logic and Secondary Editor Simultaneously
i³ Configurator version 9.10B supports accessing of main SFC Logic and its
secondary editors simultaneously to the user.

Access to SFC Logic and its secondary editors simultaneously:

The user can now view and edit the logic associated with multiple step/transition
blocks of an SFC Logic Module simultaneously. The secondary editor can be opened
in either of the following ways:

a. Double clicking on a step/transition or select it and hit ENTER to open its
associated editor
b. Using right click options to open secondary editor

Once selected for viewing/editing, the step or transition will be opened in an editor
window indicating the respective step/ transition name as a tab.

Opening multiple step/transition editors:

www.imopc.com 43

http://www.imopc.com/

Multiple steps/transitions can be opened for viewing & editing in non-debug mode.
Once opened the open steps/transitions are indicated with a lock status (red indication
on the left hand corner of the step/transition).
When secondary editors set for one or more Step/Transition block has been opened,
the main SFC Logic Editor will set to read-only mode. In this mode, the normal
operations will be disabled along with the sticky toolbar. In this mode, user can only:

a. Double-click on step/transition block or select it and hit ENTER to access its
secondary editors’ view set.
b. Right-click on step/transition block to access the context menu.

Once all secondary editors’ sets have been closed, the SFC Logic block will be set to
normal mode.

Note: Closing of the respective step/transition removes the lock indication.

Right click options on tab name of secondary editors

The following right click options on tab name of secondary editors to save & close of
Steps/Transitions are available to user.

Right click option on secondary editor tab include:

• Save Changes - Saves any changes.
• Close window tab - closes the selected tab
• Close all but this - closes all the opened tabs but the selected one
• Close all Window tab - closes all the opened tab.

Note: Save option is available only if changes have been made in the selected
Step/Transition.

www.imopc.com 44

http://www.imopc.com/

Debugging Step/Transition logic

The user can debug the main SFC Logic as well as the secondary logic and view them
simultaneously. The active step/transition in run is indicated with red color. In debug mode
SFC logics & secondary editor are not allowed for editing. Multiple steps/transitions can be
opened for viewing during debug mode.

Selection of opened steps/ transitions
Multiple steps/ transitions opened can be selected from the drop down list and navigated in
both debug & non-debug mode

www.imopc.com 45

http://www.imopc.com/

Closing SFC secondary editors

The close icon on the secondary editor can be used to close individual
steps/transitions. The tab right click options listed above can also be used for multiple
tab closures.

www.imopc.com 46

http://www.imopc.com/

FBD Editor

Function Block Diagram (FBD) Editor
The FBD editor is a powerful graphical tool that enables you to enter and manages
Function Block Diagrams according to the IEC 61131-3 standard. The editor supports
advanced graphic features such as drag and drop, object resizing and connection lines
routing features, so that you can rapidly and freely arrange the elements of your
diagram. It also enables you to insert in a FBD diagram graphic elements of the LD
(Ladder Diagram) language such as contacts and coils.

FBD diagram components: Related sections:

Function blocks
Variable tags
Comment texts
Corners
Network breaks
Labels
Jumps

Using the FBD toolbar
Selecting function blocks
Drawing connection lines
Selecting and entering variables and FB instances
Viewing the diagram
Moving or copying parts of the diagram
Inserting an object on a line
Resizing objects
Modifying Function blocks
Bookmarks

www.imopc.com 47

http://www.imopc.com/

LD components:

Contacts
Coils
"OR" vertical rail
Power rails

Note: When a contact or a coil is selected, You can press
the SPACE bar to change its type (normal, negated,
pulse...).

www.imopc.com 48

http://www.imopc.com/

Using the FBD Toolbar
Using the FBD Toolbar
The vertical toolbar on the left side of the FBD editor contains buttons for all
available editing features.

Element Selection: In this mode, no insertion of any element possible in the diagram.
The mouse is used for selecting object and lines, select tag name areas, move or copy
objects in the diagram. At any moment user can press the ESCAPE key to go back to the
Selection mode.

Add function Block: In this mode, the mouse is used for inserting blocks in the diagram.
Click in the diagram and drag the new block to the wished position. The type of block
that is inserted is the one currently selected in the list of function blocks.

Add variable: In this mode, the mouse is used for inserting variable tags. Variable tags
can then be wired to the input and output pins of the blocks. Click on the diagram and
drag the new variable to the wished position.

Add comment: In this mode, the mouse is used for inserting comment text areas in the
diagram. Comment texts can be entered anywhere. Click in the diagram and drag the
text block to the wished position. The text area can then be selected and resized.

Add arc: In this mode, the mouse is used to wire input and output pins of the diagram
objects. The line must always be drawn in the direction of the data flow: from an output
pin to an input pin

Add Corner: In this mode, the mouse is used for inserting a user defined corner on a
line.

Add break: In this mode, the mouse is used for inserting a horizontal line that acts as a
break in the diagram. Breaks have no meaning for the execution of the program. They
just help the understanding of big diagrams, by splitting them in a list of networks.

Add label: In this mode, the mouse is used for inserting a label in the diagram. A label is
used as a destination for jump symbols.

Add jump: In this mode, the mouse is used for inserting jump symbols in the diagram. A
jump indicates that the execution must be directed to the corresponding label (having the
same name as the jump symbol). Jumps are conditional instructions. They must be
linked on their left side to a Boolean data flow.

Add left power rail: In this mode, the mouse is used for inserting a left power rail in the
diagram. A left power rail is an element of the LD language, and represents a "TRUE"
state that can be used to initiate a data flow. Power rails can then be selected and resized
vertically according to the wished network height.

Add direct contact: In this mode, the mouse is used for inserting in the diagram a contact
as in Ladder Diagrams.

Add "OR" Bar: In this mode, the mouse is used for inserting a rail that collects several
Boolean data flows for an "OR" operation, in order to insert parallel contacts such as
done in Ladder Diagrams.

Add direct coil: In this mode, the mouse is used for inserting in the diagram a coil as in
Ladder Diagrams. It is not mandatory that a coil be connected on its right side.

Add right power rail: In this mode, the mouse is used for inserting a right power rail in
the diagram. A right power rail is an element of the LD language, and is commonly used
for terminating Boolean data flows. However it is not mandatory to connect coils to
power rails. Right power rails have no meaning for the execution of the diagram.

www.imopc.com 49

http://www.imopc.com/

Swap item style: Swaps visibility between tag & description for a variable. Space bar
can also be used for this function.

Show execution order: Shows execution order for blocks.

www.imopc.com 50

http://www.imopc.com/

FBD Variables
All variable symbols and constant expressions are entered in FBD diagrams using
small boxes. Press the following button in the FBD toolbar for inserting a variable tag:

Insert variable: In this mode, the mouse is used for inserting variable tags. Click in the
diagram and drag the new variable to the wished position.

Double click on a variable tag to open the variable selection box and either select the
symbol of the wished variable or enter a constant expression.

Variables tags must then be linked to other objects such as block inputs and outputs
using connection lines.

You can resize a variable box vertically in order to display together with the variable
name its tag (explicit link to the registers), its description text. The variable name is
always displayed at the bottom of the rectangle:

description
tag
name

www.imopc.com 51

http://www.imopc.com/

FBD Comments
Comment text areas can be entered anywhere in a FDB diagram. Press the following
button in the FBD toolbar for inserting a new comment area:

Insert comment text: In this mode, the mouse is used for inserting comment text areas
in the diagram. Comment texts can be entered anywhere. Click in the diagram and drag
the text block to the wished position.

Double click on the comment area for entering or changing the attached text. When
selected, comment texts can be resized.

www.imopc.com 52

http://www.imopc.com/

FBD Corners
Corners are used to force the routing of connection lines, as the FBD editor imposes a
default routing only between two pins or user defined corners. All variable symbols
and constant expressions are entered in FBD diagrams using small boxes. Press the
following button in the FBD toolbar for inserting a corner on a line:

Insert corner: In this mode, the mouse is used for inserting a user defined corner on a
line.

You can drag a new line from an output pin to an empty space. In that case the editor
automatically finished the line with a user defined corner so that you can continue
drawing the connection to the wished pin and force the routing while you are drawing
the line.

Corners can then be selected and moved to change the routing of existing lines.

www.imopc.com 53

http://www.imopc.com/

FBD Network Breaks
Network breaks can be entered anywhere in a FBD diagram. Breaks have no meaning
for the execution of the program. They just help the understanding of big diagrams,
by splitting them in a list of networks. Press the following button in the FBD toolbar
for inserting a new break:

Insert network break: In this mode, the mouse is used for inserting a horizontal line
that acts as a break in the diagram.

The break line is drawn on the whole diagram width. No other object can overlap a
network break. Break lines can then be selected and moved vertically to another
location.

Network breaks can also be used for browsing the diagram. Press Ctrl+Page Up or
Ctrl+Page Down keys to move the selection to the next or previous network break.

www.imopc.com 54

http://www.imopc.com/

FBD "OR" Vertical Rail
The FBD editor enables the drawing of LD rungs. A particular object, the "OR" rail
can be inserted on a rung in order to connect parallel contacts together press the
following button in the FBD toolbar for inserting a new "OR" rail:

Insert "OR" rail: In this mode, the mouse is used for inserting a rail that collects
several Boolean data flows for an "OR" operation, in order to insert parallel contacts
such as done in Ladder Diagrams.

The "OR" rail has exactly the same meaninig as an "OR" block regarding the
execution of the diagram.

www.imopc.com 55

http://www.imopc.com/

Drawing FBD Connection Lines

Press this button before inserting a new line.

The editor enables you to terminate a connection line with a boolean negation
represented by a small circle. To set or remove the boolean negation, select the line and
press the SPACE bar.

Example:

Connection lines must always be drawn in the direction of the data flow: from an
output pin to an input pin. The FBD editor automatically selects the best routing for
the new line. Connection lines indicate a data flow between the following possible
objects:

Block: Refer to the help on the block for the description of its input and output pins, and
the expected data types for the coherency of the diagram.

Variable: Variables can be connected on their right side (to initiate a flow) or on their
left side for forcing the variable, if it is not "read only". The flow must fit the data type
of the variable.

Jump: a jump must be connected on its left side to a Boolean data flow.

Left power rail: Left power rails represent a TRUE state and can be connected to a non
limited number of objects on their right side.

Contact: A contact must be connected on its left side and on its right side to Boolean
data flows.

"OR" rail: Such rail that collects several Boolean data flows for an "OR" operation, in
order to insert parallel contacts such as done in Ladder Diagrams. It may have several
connections on its left side and on its right side. All connected data flows must be
Boolean.

Coil: A coil must be connected on its left side to a Boolean data flow. It is not
mandatory that a coil be connected on its right side.

Right power rail: A right power rail is an element of the LD language, and is
commonly used for terminating Boolean data flows. It has a non limited number of
connections on its left side. It is not mandatory to connect coils to power rails.

www.imopc.com 56

http://www.imopc.com/

Selecting FBD Variables and Instances

Press this button or press ESCAPE before any selection.
To select the name of the declared variable to be attached to a graphic symbol, you
must be in "Selection" mode. Simply double click on the tag name gray area. The
following types of object must be linked to valid symbols:

Block: If it is a function block, you must specify the name of a valid declared instance
of the corresponding type. The Function blocks can be selected by double-clicking the
blocks and selecting the required block from the list of blocks available. The number of
operands can also be selected.

Variable: This field must be attached to a declared variable. Also, a variable box may
contain the text of a valid constant expression. Variables will have the names of the
registers of operands.

Label: This function is used to break the execution of the program and jump to a desired
place in the program. It must have a unique name within the diagram. This operation
would be the destination for the corresponding Jump operation.

Jump: This function is used to break the execution of the program and jump to a desired
place in the program. It must have the same name as declared using the destination
Label operation within the diagram.

Contact: This must be attached to a declared Boolean variable or after placing this
symbol on the diagram a Boolean variable should be declared as a contact.

Coil: This must be attached to a declared Boolean variable or after placing this symbol
on the diagram a Boolean variable should be declared as a coil.

Symbols of variables and instances are selected using the variable list, that can be
used as the variable editor.

You can simply enter a symbol or constant expression in the edit box and press OK.
You also can select a name in the list of declared object, or declare a new variable by
pressing the "Create" button.

more details...

www.imopc.com 57

http://www.imopc.com/

Viewing FBD Diagrams
The diagram is entered in a logical grid. All objects are snapped to the grid.

At any moment you can use the View | Zoom menu option for zooming in or out the
edited diagram. You also can press the [+] and [-] keys of the numerical keypad for
zooming the diagram in or out.

www.imopc.com 58

http://www.imopc.com/

Moving or Copying FBD Objects

Press this button or press ESCAPE before selecting objects.

The FBD editor fully supports drag and drop for moving or copying objects. To move
objects, select them and simply drag them to the wished position.

To copy objects, you may do the same, and just press the CONTROL key while
dragging. It is also possible to drag pieces of diagrams from a program to another if
both are open and visible on the screen.

At any moment while dragging objects you can press ESCAPE to cancel the
operation.

Alternatively, you can use classical Copy / Cut / Paste commands from the Edit menu.
When you run the Paste command, the editors turns in "Paste" mode, with a special
mouse cursor. Click in the diagram and move the mouse cursor to the wished position
for inserting pasted objects.
Using the Keyboard
When graphic objects are selected, you can move them in the diagram by hitting the
following keys:

Shift + Up Move to the top
Shift + Down Move to the bottom
Shift + Left Move to left
Shift + Right Move to right

When an object is selected, you can extend the selection by hitting the following keys:

Shift + Control + Home Extend to the top: select all objects before the selected one
Shift + Control + End Extend to the bottom: select all objects after the selected one

To insert or delete space in the diagram, you can simply select an object, press
Shift+Control+End to extend the selection and then move selected objects up or
down.
Auto Alignment
When objects are selected, the following keystrokes automatically align them:

Control + Up To the top
Control + Down To the bottom
Control + Left To left
Control + Right To right

www.imopc.com 59

http://www.imopc.com/

Inserting FBD Objects on a Line
The FBD editor enables you to insert an object on an existing line and automatically
connect it to the line. This feature is available for all objects having one input pin and
one output pin, such as variable boxes, contacts and coils. This feature is mainly
useful when entering pieces of Ladder Diagrams. Just draw a horizontal line between
left and right power rails: this is the rung. Then you can simply insert contacts and
coils on the line to build the LD rung.

www.imopc.com 60

http://www.imopc.com/

Resizing FBD Objects

Press this button or press ESCAPE before selecting objects.

When an object is selected, small square boxes indicates you how to resize it with the
mouse. Click on the small square boxes for resizing the object in the wished direction.

Not all objects can be resized. The following table indicates possible operations:

Variable Horizontally and vertically (*)
Block Horizontally
Labels and jumps Horizontally
Power rails Vertically (Before connecting elements to them)
OR rail Vertically (Before connecting elements to them)
Comment area In all directions

(*) Resizing a variable box vertically enables you to display together with the variable
name its tag (short comment text), its description text, plus its I/O location it the
variable is mapped to an I/O channel. The variable name is always displayed at the
bottom of the rectangle:

description
tag
name

www.imopc.com 61

http://www.imopc.com/

LD Editor

Ladder Diagram (LD) Editor
The LD editor is a powerful graphical tool that enables you to enter and manage
Ladder Diagrams according to the IEC 61131-3 standard. The editor enables quick
input using the keyboards, and supports advanced graphic features such as drag and
drop.

LD diagram components: Related sections:
Rungs
Contacts
Coils
Power rails
Function blocks
Labels
Jumps
Comments

Using the LD toolbar
Selecting function blocks
Selecting and entering variables and FB instances
Viewing the diagram
Moving or copying parts of the diagram
Modifying Function blocks
Bookmarks

Note: When a contact or a coil is selected, You can press the SPACE bar to change its
type (normal, negated, pulse...)

www.imopc.com 62

http://www.imopc.com/

Using the LD Toolbar
The vertical toolbar on the left side of the editor contains buttons for inserting items in
the diagrams. Items are inserted at the current position in the diagram.

Shift+F4 Insert a contact before the selected item.

F4 Insert a contact after the selected item.

Ctrl+F4 Insert a contact in parallel with the selected items

Ctrl+Space Insert a horizontal line before the selected item so that it is pushed to the
right.

Mouse
Click

Swap elements between NO, NC, Positive triggered or Negative triggered
for Contacts and Coils. Additionally swap Set and Reset Elements for
Coils. Space bar can also be used for this function.

Shift+F8 Insert a block before the selected item.

F8 Insert a block after the selected item.

Ctrl+F8 Insert a block in parallel with the selected items.

Shift+F9 Add a jump in parallel with the selected coil.

F9 Add a coil in parallel with the selected coil.

Ctrl+R Insert a new rung in the diagram.

Ctrl+D Insert a comment between rungs.

Mouse
Click Align Coils to the right to uniformly display the networks.

www.imopc.com 63

http://www.imopc.com/

Managing Rungs

 Ctrl+R: Press this button in the LD toolbar to insert a new rung.

Shift+F4: Insert a contact before the selected item. This icon also adds a rung when the
Rung is blank

A LD diagram is a sequential list of rungs. Each rung represents left to right boolean
power flow, that begins with a power rail, always drawn in the first column of the
diagram, and finishes with a coil or a jump symbol.
Each Rung is identified by a default numbered identifier (Rnnn) displayed on the left
of the power rail. The rung identifier can be used as a target for jump instructions.
Alternatively you can enter a specific rung label by double clicking in the rung head
on the left margin.

The LD editor enables you to manipulate whole rungs by selecting only their head in
the left margin. The following example shows a selected rung:

When a rung is selected, use the right click options to delete, copy or cut it.

www.imopc.com 64

http://www.imopc.com/

Comments in LD Diagrams

Press this button in the LD toolbar to insert a new comment line.

The LD editor enables you to insert comment texts in the diagram. A comments is a
single line of text inserted between two rungs. The comment text is displayed on a
double line in the diagram:

Comment texts have no meaning for the execution of the diagram. They are used to
enhance the readability of the program, enabling the description of each rung.

The comment text remains visible when the diagram is scrolled horizontally. To
change the text of the comment, place the selection anywhere on the comment line
and hit ENTER key, or simply double click on the comment line.

www.imopc.com 65

http://www.imopc.com/

Viewing LD Diagrams
The diagram is entered in a logical grid. All objects are snapped to the grid.

At any moment you can use the commands of the "View" menu for zooming in or out
the edited diagram. You also can press the [+] and [-] keys of the numerical keypad
for zooming the diagram in or out.

You also can drag the separation lines in vertical and horizontal rulers to freely resize
the cells of the grid:

The LD editor adjust the size of the font according to the zoom ratio so that the name
of variables associated with contacts and coils are always visible. If cells have
sufficient height, variable names are completed with other pieces of information about
the variable:

• its tag (association with the target registers)
• its description text

www.imopc.com 66

http://www.imopc.com/

Moving and Copying LD Items
The LD editor fully supports drag and drop for moving or copying objects. To move
objects, select them and simply drag them to the wished position, in the same rung or
in another rung.

To copy objects, you may do the same, and just press the CONTROL key while
dragging. It is also possible to drag pieces of diagrams from a program to another if
both are open and visible on the screen.

At any moment while dragging objects you can press ESCAPE to cancel the
operation.

Alternatively, you can use classical Copy / Cut / Paste commands from the Edit menu.
Paste is performed at the current position.

You can manipulate whole rungs by selecting only their head in the left margin (select
only the cell where the rung number is displayed).

www.imopc.com 67

http://www.imopc.com/

ST Editor

Structured Text (ST) Editor
The ST editor is a powerful language sensitive text editor dedicated to IEC 61131-3
languages. The editor supports advanced graphic features such as drag and drop,
syntax coloring and active tooltips for efficient input and test of programs in ST.

ST is a structured literal programming language. A ST program is a list of statements.
Each statement describes an action and must end with a semi-colon (";").

The presentation of the text has no meaning for a ST program. You can insert blank
characters and line breaks where you want in the program text.

Related sections:
Syntax coloring
Auto-completion of words
Drag and drop
Active tooltips

www.imopc.com 68

http://www.imopc.com/

ST / IL Syntax Coloring
The ST / IL editor supports syntax coloring according to the selected programming
language (ST or IL). The editor uses different colors for the following kind of words:

1. Default (identifiers, separators...)
2. Reserved keywords of the language
3. Constant expressions
4. Comments

www.imopc.com 69

http://www.imopc.com/

Auto Completion of Words
The ST / IL editor includes powerful commands for automatic completion of typed
words, according to declared variables and data types. The following features are
available:

Auto completion of a variable name
If you enter the first letters of a variable name, you can hit the CTRL+SPACE keys
for automatically completing the name. A popup list is displayed with possible
choices if several declared variable names match the type characters.

Selection of FB member
When you type the name of a function block instance (use either as an instance or a
data structure), pressing the point "." after the name of the instance opens a popup list
with the names of possible members.

Other syntax related commands
When lines are selected, you can automatically indent them. Press TAB or
Shift+TAB keys to shift the lines to the left or to the right, by adding or removing
blank characters on the left.

www.imopc.com 70

http://www.imopc.com/

ST / IL Drag and Drop Features
The ST / IL editor supports powerful drag and drop features that help you developing
and testing your programs. You can:

• drag text (words or lines) from the ST / IL editor to another application (such
as a text editor)

• do the opposite
• drag a variable symbol from the Program Variables Window to the ST / IL

editor
• drag a variable symbol from the ST / IL editor to the watch list (*)

(*) When dragging the symbol of an array to the watch list, all items of the array are added to the watch
list.

www.imopc.com 71

http://www.imopc.com/

Tooltips in the ST Editor
You dont need to run any specific command to open the tooltip. Just activate the
editor window by clicking upon it and put the mouse on the variable symbol and wait
for one second. The tooltip will show fields of the variable pointed to by the mouse
cursor. However, the Tool tip has to be enabled in the IEC Language Editor settings
window and the specific fields need to be selected . It can be accessed from Menu-
Tools/Editor options.

In the Debug mode, the tool tip will show the current value in addition to all the fields
shown in Editor mode.

The value shown in the tooltip is automatically refreshed while the tooltip is open.

www.imopc.com 72

http://www.imopc.com/

IL Editor

Instruction List (IL) Editor
The IL editor is a powerful language sensitive text editor dedicated to IEC 61131-3
languages. The editor supports advanced graphic features such as drag and drop,
syntax coloring and active tooltips for efficient input and test of programs in IL.

A program written in IL language is a list of instructions. Each instruction is written
on one line of text. An instruction may have one or more operands. Operands are
variables or constant expressions. Each instruction may begin with a label, followed
by the ":" character. Labels are used as destination for jump instructions.

IL instructions in the program must be entered between BEGIN_IL and END_IL
keywords, such as in the following example:

Related sections:

www.imopc.com 73

http://www.imopc.com/

Syntax coloring
Auto-completion of words
Drag and drop
Active tooltips
Selecting function blocks
Inserting variable and FB instances symbols
Bookmarks

www.imopc.com 74

http://www.imopc.com/

ST / IL Syntax Coloring
The ST / IL editor supports syntax coloring according to the selected programming
language (ST or IL). The editor uses different colors for the following kind of words:

1. Default (identifiers, separators...)
2. Reserved keywords of the language
3. Constant expressions
4. Comments

www.imopc.com 75

http://www.imopc.com/

Auto Completion of Words
The ST / IL editor includes powerful commands for automatic completion of typed
words, according to declared variables and data types. The following features are
available:

Auto completion of a variable name
If you enter the first letters of a variable name, you can hit the CTRL+SPACE keys
for automatically completing the name. A popup list is displayed with possible
choices if several declared variable names match the type characters.

Selection of FB member
When you type the name of a function block instance (use either as an instance or a
data structure), pressing the point "." after the name of the instance opens a popup list
with the names of possible members.

Other syntax related commands
When lines are selected, you can automatically indent them. Press TAB or
Shift+TAB keys to shift the lines to the left or to the right, by adding or removing
blank characters on the left.

www.imopc.com 76

http://www.imopc.com/

ST / IL Drag and Drop Features
The ST / IL editor supports powerful drag and drop features that help you developing
and testing your programs. You can:

• drag text (words or lines) from the ST / IL editor to another application (such
as a text editor)

• do the opposite
• drag a variable symbol from the Program Variables Window to the ST / IL

editor
• drag a variable symbol from the ST / IL editor to the watch list (*)

(*) When dragging the symbol of an array to the watch list, all items of the array are added to the watch
list.

www.imopc.com 77

http://www.imopc.com/

Tooltips in the IL Editor
You dont need to run any specific command to open the tooltip. Just activate the
editor window by clicking upon it and put the mouse on the variable symbol and wait
for one second. The tooltip will show fields of the variable pointed to by the mouse
cursor. However, the Tool tip has to be enabled in the IEC Language Editor settings
window and the specific fields need to be selected . It can be accessed from Menu-
Tools/Editor options.

In the Debug mode, the tool tip will show the current value in addition to all the fields
shown in Editor mode.

The value shown in the tooltip is automatically refreshed while the tooltip is open.

www.imopc.com 78

http://www.imopc.com/

Selecting Function Blocks Using IEC Project Toolbox
Project Toolbox

The Project Toolbox simplifies adding of logic blocks to the logic editing area. The
blocks are grouped according to their functionality.

Each group can be expanded expanded independently to access the various functions.

Left clicking the function and dragging it to the logic editing area, places the element
there.

www.imopc.com 79

http://www.imopc.com/

If the project has subroutines or UDFBs defined, the same will also be listed under
'Project' in toolbox for easy drag and drop.
Notes:
The elements that are not supported by the configured model will be grayed.
The Project Toolbox contents are not applicable when editing the main SFC

Module in IEC Programs.
In this case, the toolbox window contents will be empty.

www.imopc.com 80

http://www.imopc.com/

Modifying Function blocks
IEC Project Toolbox

Double-clicking on the Function blocks open the IEC Function blocks selection
window which lists out all the function blocks present for the IEC Editor. This allows
user to change an existing function block to a different one.

This dialog also allows to change the number of inputs for few blocks. Eg. the number
of inputs for Add block by default are 2 but can be changed by changing 'Number of
Input Pins' in this dialog.

Note: For blocks which do not allow variable number of inputs, this edit box is
greyed.

This feature is available for FBD and LD language editors only.

www.imopc.com 81

http://www.imopc.com/

Selecting Variables and Instances
Symbols of variables and instances are selected using the variable list, that can be
used as the variable editor. Selecting variables is available from all editors:

• In FBD diagrams, double click on a variable box, a FB instance name, a
contact or a coil to select the associated variable.

• In LD diagrams, double click on a contact, a coil or a block input or output to
select the variable. Double click on the top of a FB rectangle to select an
instance.

• In ST/IL texts, place the cursor where variable needs to be inserted. Right
click and select Insert/Set Variable.

When the Program Variables Window is enabled from Tools Menu, you can simply
drag a variable from the list to the program to insert it.

If Editor Options > Diagrams > 'Prompt for Variable Name after insert' is checked,
the Program Variables dialog gets opened when a variable is placed in the logic
editing area.

When inserting a variable name manually, the Workbench automatically checks if it
exists and if not, proposes you to declare it right now, if 'Ask for Declaration when
new variable is inserted' is enabled in Editor Options > Diagrams.

www.imopc.com 82

http://www.imopc.com/

Output Window
The Output Window is a dockable window which lists all the compilation errors in an
application. Double clicking on the error in the list, goes to the error location without
closing the output window.

Like all dockable windows, it can be placed in pinned, hidden, docking and floating
mode anywhere in the working area.

Output Window Details:
The output window lists out the errors present in each of the blocks by checking block
by block.

The Error List uses the following Syntax:

[BlockType and No.]: [Location – Co-ordinates of the error]: [Description]
[BlockType and No.]: Displays the type of block that has reported the error and the
no. assigned to it in case of more than one block of same type.
[Location – Co-ordinates of the error]: Gives the Row and Column location of the
offending element.
[Description] gives a short description of the problem

www.imopc.com 83

http://www.imopc.com/

Defines

Definitions
Definitions are typically used for replacing a constant expression and ease the
maintenance of programs.
There are three levels of definitions:

• Pre-defined Library of Defines
• Global to all program blocks of a project
• Local to one program block

Each definition must be entered on one line of text according to the following syntax:

 #define Identifier Equivalence (* comments *)

Below are some examples:

#defineOFF FALSE (* redefinition of FALSE constant *)
#define PI 3.14 (* numerical constant *)
#define ALARM (bLevel > 100) (* complex expression *)

You can use a definition within the contents of another definition. The definition used
in the other one must be declared first. Below is an example:

#define PI 3.14
#define TWOPI (PI * 2.0)
Notes:
A definition may be empty, for example:

#define CONDITION

Defined word can be used for directing the conditional compiling directives.

You can enter #define lines directly in the source code of programs in IL or ST
languages.

The use of definitions may disturb the program monitoring and make error reports
more complex. It is recommended to restrict the use of definitions to simple
expressions that have no risk to lead to a misunderstanding when reading or
debugging a program.

www.imopc.com 84

http://www.imopc.com/

Defines Window
The Defines Window is a window where the constant values can be assigned.

It includes the Pre-defined system constants known as Library Defines (OEM) as well
as the Global defines which can be used in all the blocks and Local defines which are
block specific.

The Contents of a particular section of the defines editor can be edited by double-
clicking that section or by selecting it and clicking the Configure button to bring up
the Defines Editor Tabbed Window in the editing area.

A Defines Editor is opened for the Global Defines and for the block specific Local
Defines where the variables can be viewed/edited in the logic editing and assigned a
constant value.

www.imopc.com 85

http://www.imopc.com/

Bookmarks
Bookmarks are used for navigating in a document. You can freely insert bookmarks
everywhere in a document. Then you can jump from a bookmark to another with a
single command for browsing the document. Bookmarks are supported in all program
editors plus the Program Variables Window.

Below are the available commands for using bookmarks:

Ctrl + F2 Toggle the bookmark at the current position
Shift + F2 Go to the next bookmark

Depending on the type of document, the possible locations for a bookmark are:

• In the text editor, a bookmark is placed on a line of text.
• In the SFC editor, a bookmark is placed on a SFC symbol (step, transition,

jump...).
• In the FBD editor, a bookmark is placed on any FBD object (not on a line).
• In the LD editor, a bookmark is placed on a rung header.
• In the Program Variables Window, a bookmark is placed on any line of the

grid (variable or group).

Note: Bookmarks are valid only while the editing window is open, and are not stored
in the document when the window is closed.

www.imopc.com 86

http://www.imopc.com/

Check a Program for Errors in IEC Programs
Program Errors are problems present in the Language blocks that prevent the program
from running, such as unconnected elements, data type mismatch for operands, etc;
ERRORS must be corrected before the program can be downloaded.

IEC Programs are automatically compiled for syntactical errors before they are
downloaded to the controller. The Output window is displayed with the results of the
compilation.

Manually check a program for errors by selecting Program | Error Check from the
Main Menu or selecting the Error Check tool from the Unit communications
Toolbar.

If there are no errors, then a No-Error Message box appears, along with details in the
Output Window:

1) Error Check Icon: This Icon from the Unit communications tool bar helps in
manual compilation of the program.
2) No-Error Message Box: This contains the details of the program in terms of
memory usage by various functions.
3) Output Window: Lists out the details of the Errors present in the program.

www.imopc.com 87

http://www.imopc.com/

If there are Errors present in the program then the Error checking results are displayed
only in the docking Output window. Clicking an error location in error list goes to the
error location without closing the error window.

The output window lists out the errors present in each of the blocks by checking block
by block.

The Error List uses the following Syntax:

[Modulename]: [Location – Co-ordinates of the error]: [Description]
[Modulename]: Displays the type of block that has reported the error and the no.
assigned to it in case of more than one block of same type.
[Location – Co-ordinates of the error]: Gives the Row and Column location of the
offending element.
[Description] gives a short description of the problem

www.imopc.com 88

http://www.imopc.com/

Debugging the Application

Debugging the Application
Use the following commands in the main window to test or monitor your application:

Press this button to go On Line/Debug mode and establish the connection with the
remote target. Project monitoring will be available when the connection is established.

How to monitor the application:

• Using the editors in Debug mode
• Using the Watch Window

www.imopc.com 89

http://www.imopc.com/

Using the Editors in Debug Mode
In Debug mode, all editors are animated with real time values of the edited objects:

• In the Program Variables Window at Run time, the value of a variable is displayed
in text format in the "Value" column.

Forcing a variable:
At run time, double click on a variable name or press ENTER key when it is selected
in the Program Variables Window or in the Logic Editor Area to open the Variable
Debug Window.

www.imopc.com 90

http://www.imopc.com/

The Variable Debug Window has the option to Force, Lock, or Unlock the value of
variable as entered in the variable field. The window also gives the value of the
variable in binary format.

In the Logic Editing Area for each of the languages, the debug is displayed in
following forms:

• Values of variables, contacts and coils are displayed in FBD and LD diagrams.
Double click on a variable name to force or lock the variable.
• Step activities (tokens) are displayed in the SFC editor
• In the text (ST or IL) editor, place the mouse cursor on a variable name to display its
real time value in a tooltip. Double click on the variable name with the SHIFT key
pressed to force or lock the variable.

www.imopc.com 91

http://www.imopc.com/

Using Data Watch window - Variable Lists
The Data Watch window is available in the Debug mode only.

Press this button in the Main Window to open the Data Watch window.

It can also be accessed from Tools | Data Watch Window.

It is a powerful monitoring tool that enables you to spy variables of the application at
Run time. The watch window enables you to build list of variables to be monitored
that get saved along with the program.

Insert Variable: Right click in the Data Watch Window to insert a variable and select
Insert Variable or use keyboard shortcut Ins. Alternatively, you can drag variables
from program editors or from the Program Variables Window to the Data Watch
window to insert them in the list.

Move variables within the list: Use the "Move Up/ Move Down" commands to change
the order of variables in the list.

Hexadecimal Display: You can right click and select Hexadecimal Display to display
the variables in hexadecimal format. This feature is very useful when you spy strings
with a large length or including non printable characters.

www.imopc.com 92

http://www.imopc.com/

Tools

Finding Elements in IEC modules
For IEC Editors, there are two find options available, Edit | Find and Edit | Find in
Logic Modules which are mentioned below:

The Find option searches the text in the current logic block and stops when the next
occurrence of the same is found. The user needs to select the text and press enter to
find it again. This option also wraps searches in the current logic block.

The Find in Logic Modules has the option of searching the text in either current logic
module or all the logic modules. The Search results are displayed in upto two separate
docking windows. The user can also select the window in which search results search
results should be shown. Double clicking a reported location in the search window
goes to the element without closing the search window.

Search results are displayed in upto two separate docking windows. The user can also
select the window in which search results search results should be shown.

Double clicking a reported location in the search window goes to the element without
closing the search window.

www.imopc.com 93

http://www.imopc.com/

www.imopc.com 94

http://www.imopc.com/

How to search and Replace in IEC Modules
This feature allows the user to locate and change all occurrences of a particular
variable in all logic modules of an IEC program. For example, all occurrences of Var1
can be changed to MyVar.
For IEC Editors, two replace options are available, Edit | Replace and Edit | Replace
in Logic Modules which are mentioned below:

The Replace option searches the text in the current logic block and stops when the
next occurrence of the same is found. The user needs to select the text and press enter
to find it again. This option also wraps searches in the current logic block.

The Replace in Logic Modules has the option of replacing all the occurrences of the
text in either current logic module or selected logic modules. The occurrences
replaced are displayed in output window. Double clicking a reported location in the
search window goes to the element without closing the search window.

Find What
In the Find What area enter the variable name to be replaced.

Replace With
In the Replace With area, enter the variable name to be used as the replacement.

Match whole word
When this checkbox is checked, full word would be matched. For example, if there
are three variables NewVar, NewVar1 and NewVar2 defined, Find What string is
NewVar and Replaced With string is MyVar. When this checkbox is unchecked, all
occurrences of NewVar, NewVar1 and NewVar2 will be replaced with MyVar. If this
option is checked, only NewVar occurrences will be replaced with MyVar.

Note: text replaced by these options can be reverted back.

www.imopc.com 95

http://www.imopc.com/

Languages

Programming Languages - Reference guide
Refer to the following pages for an overview of the IEC61131-3 programming
languages:

Program organization units
Data types
Structures
Variables
Arrays
Constant expressions
Conditional compiling

SFC: Sequential Function Chart
FBD: Function Block Diagram
LD: Ladder Diagram
ST: Structured Text
IL: Instruction List

The following topics detail the set of programming features and standard blocks:

Basic operations

www.imopc.com 96

http://www.imopc.com/

Programming Languages

Programming languages - Overview
Below are the available programming languages of the IEC61131-3 standard:

SFC: Sequential Function Chart
FBD: Function Block Diagram
LD: Ladder Diagram
ST: Structured Text
IL: Instruction List

You have to select a language for each program or User Defined Function Block of
the application.

www.imopc.com 97

http://www.imopc.com/

SFC

Sequential Function Chart (SFC)
The SFC language is a state diagram. Graphical steps are used to represent stable
states, and transitions describe the conditions and events that lead to a change of state.
Using SFC highly simplifies the programming of sequential operations as it saves a
lot of variables and tests just for maintaining the program context.

Important Note
You should not use SFC as a decision diagram. Using a step as a point of decision and
transitions as conditions in an algorithm should never appear in a SFC chart. Using
SFC as a decision language leads to poor performance and complicated charts. ST
should be preferred when programming a decision algorithm that has no sense in
terms of "program state".

Below are basic components of an SFC chart:

Chart: Programming:
Steps and initial steps
Transitions and divergences
Parallel branches
Macro-steps
Jump to a step

Actions within a step
Programming a transition condition
How SFC is executed

www.imopc.com 98

http://www.imopc.com/

SFC Steps
A step represents a stable state. It is drawn as a square box in the SFC chart. Each
must step of a program is identified by a unique number. At run time, a step can be
either active or inactive according to the state of the program.

Note: To change the number of a step, transition or jump, select it and hit
Ctrl+ENTER keys.

All actions linked to the steps are executed according to the activity of the step.

Inactive step Active step

In conditions and actions of the SFC program, you can test the step activity by
specifying its name ("GS" plus the step number) followed by ".X". For example:

GS100.X is TRUE if step 100 is active
(expression has the BOOL data type)

You can also test the activity time of a step, by specifying the step name followed by
".T". It is the time elapsed since the activation of the step. When the step is de-
activated, this time remains unchanged. It will be reset to 0 on the next step activation.
For example:

GS100.T is the time elapsed since step 100 was activated
(expression has the TIME data type)

Initial Steps
Initial steps represent the initial situation of the chart when the program is started.
There must be at least one initial step in each SFC chart. An initial step is marked
with a double line as shown below:

www.imopc.com 99

http://www.imopc.com/

SFC Transitions
Transitions represent a condition that changes the program activity from a step to
another.

Note: To change the number of a step, transition or jump, select it and hit
Ctrl+ENTER keys.

The transition is marked by a small horizontal line that crosses a link drawn betweeh
the two steps:

Each transition is identified by a unique number in the SFC
program.
Each transition must be completed with a boolean condition
that indicates if the transition can be crossed. The condition is a
BOOL expression.
In order to simplify the chart and reduce the number of drawn
links, you can specify the activity flag of a step (GSnnn.X) in
the condition of the transition.

Transitions define the dynamic behaviour of the SFC chart, according to the following
rules:

• A transition in crossed if:
o its condition is TRUE
o and if all steps linked to the top of the transition (before) are active

• When a transition is crossed:
o all steps linked to the top of the transition (before) are de-activated
o all steps linked to the bottom of the transition (after) are activated

Divergences
It is possible to link a step to several transitions and thus create a divergence. The
divergence is represented by a horizontal line. Transitions after the divergence
represent several possible changes in the situation of the program.

All conditions are considered as exclusive, according to a "left to right" priority order.
It means that a transition is considered as FALSE if at least one of the transitions
connected to the same divergence on its left side is TRUE.

Below is an example:

Transition 1 is crossed if:
 step 1 is active
 and Cond1 is TRUE
Transition 2 is crossed if:
 step 1 is active
 and Cond2 is TRUE
 and Cond1 is FALSE

www.imopc.com 100

http://www.imopc.com/

SFC Parallel Branches
Parallel branches are used in SFC charts to represent parallel operations. Parallel
branches occur when more than several steps are conected after the same transition.
Parallel branches are drawn as double horizontal lines:

When the transition before the divergence (1 on this
example) is crossed, all steps beginning the parallel
branches (101 and 201 here) are activated.
Sequencement of parallel branches may take different
timing according to each branch execution.
The transition after the convergence (2 on this
example) is crossed when all the steps connected
before the convergence line (last step of each branch)
are active. The transition indicates a synchronization
of all parallel branches.
If needed, a branch may be finished with an "empty"
step (with no action). It represents the state where the
branch "waits" for the other ones to be completed.

You must take care of the following rules when drawing parallel lines in order to
avoid dead locks in the execution of the program:

• All branches must be connected to the divergence and the convergence.
• An element of a branch must not be connected to an element outside the

divergence.

www.imopc.com 101

http://www.imopc.com/

SFC Macro Steps
A macro step is a special symbol that represents, within a SFC chart, a part of the
chart that begins with a step and ends with a step. The body of the macro-step must be
declared in the same program. The body of a macro-step begins with a special "begin"
step with no link before, and ends with a special "end" step with no link after. The
symbol of the macros step in the main chart has double horizontal lines:

A: Main Chart
B: Body of the macro-step

1: Macro step symbol
2: "Begin" step
3: "End" step

Important notes:
• The macro-step symbol and the beginning step must have the same number.
• The body of the macro-step should have no link with other parts of the main

diagram (must be connex).
• A macro step is not a "sub program". It is just a drawing features that enables

you to make clearer charts. You should never insert several macro-step
symbols referring to the same macro-step body.

www.imopc.com 102

http://www.imopc.com/

Jump to a SFC step
"Jump" symbols can be used in SFC charts to represent a link from a transition to a
step without actually drawing it. The jump is represented by an arrow identified with
the number of the target step.
Note: To change the number of a step, transition or jump, select it and hit
Ctrl+ENTER keys.

You cannot insert a jump to a transition as it may lead to a non explicit convergence
of parallel branches (several steps leading to the same transition) and generally leads
to mistakes due to a bad understanding of the chart.

www.imopc.com 103

http://www.imopc.com/

Actions in an SFC Step
Each step has a list of action blocks, that are instructions to be executed according to
the activity of the step. Actions can be simple boolean or SFC actions, that consists in
assigning a boolean variable or control a chilld SFC program using the step activity,
or action blocks entered using another language (FBD, LD, ST or IL).

Example of an action in ST Language:
Example of an action in LD Language:

Simple boolean actions:
Below are the possible syntaxes you can use within an SFC step to perform a simple
boolean action:

BoolVar (N); Forces the variable "BoolVar" to TRUE when the step is activated,
and to FALSE when the step is de-activated.

BoolVar (S); Sets the variable "BoolVar" to TRUE when step is activated
BoolVar (R); Sets the variable "BoolVar" to FALSE when step is activated

/ BoolVar; Forces the variable "BoolVar" to FALSE when the step is activated,
and to TRUE when the step is de-activated.

Programmed action blocks:
Programs in other languages (FBD, LD, ST or IL) can be entered to describe an SFC
step action. There are three main types of programmed action blocks, that correspond
to the following identifiers:

P1 Executed only once when the step becomes active
N Executed on each cycle while the step is active
P0 Executed only once when the step becomes inactive

i³ Configurator provides you templates for entering P1, N and P0 action blocks in
either ST, LD or FBD language. Alternatively, you can insert action blocks

www.imopc.com 104

http://www.imopc.com/

programmed in ST language directly in the list of simple actions, using the following
syntax:

 ACTION (qualifier) :
 statements...
 END_ACTION;

Where qualifier is "P1", "N" or "P0".

www.imopc.com 105

http://www.imopc.com/

Condition of a SFC Transition
Each SFC transitions must have a boolean condition that indicates if the transition can
be crossed. The condition is a boolean expression that can be programmed either in
ST or LD language.

The following conditions can be attributed to a Transition

Transition[T]: Insert a transition

Set timer on transition: Set timer to a transition

A Timed Transition will execute the next Step after the time has elapsed.
In ST language, enter a boolean expression. In can be a complex expression including
function calls and parenthesis. For example:

 bForce AND (bAlarm OR min (iLevel, 1) <> 1)

In LD language, the condition is represented by a single rung. The coil at the end of
the rung represents the transition and should have no symbol attached. For example:

www.imopc.com 106

http://www.imopc.com/

Execution at Runtime
SFC programs are executed sequentially within a target cycle, according to the order
defined when entering programs in the hierarchy tree.

Within a chart, all valid transitions are evaluated first, and then actions of active steps
are performed. The chart is evaluated from the left to the right and from the top to the
bottom. Below is an example:

Execution order:

• Evaluate transitions:
• 1, 101, 2
• Manage steps:
• 1, 101, 201, 102

In case of a divergence, all conditions are considered as exclusive, according to a "left
to right" priority order. It means that a transition is considered as FALSE if at least
one of the transitions connected to the same divergence on its left side is TRUE.

The initial steps define the initial status of the program when it is started. All top level
(main) programs are started when the application starts.

The evaluation of transitions leads to changes of active steps, according to the
following rules:

• A transition in crossed if:
o its condition is TRUE
o and if all steps linked to the top of the transition (before) are active

• When a transition is crossed:
o all steps linked to the top of the transition (before) are de-activated
o all steps linked to the bottom of the transition (after) are activated

Important note:
Execution of SFC within the target is sampled according to the target cycles. When a
transition is crossed within a cycle, the following steps are activated, and the
evaluation of the chart will continue on the next cycle. If several consecutive
transitions are TRUE within a branch, only one of them is crossed within one target
cycle.

www.imopc.com 107

http://www.imopc.com/

Function Block Diagram (FBD)
A Function Block Diagram is a data flow between constant expressions or variables
and operations represented by rectangular blocks. Operations can be basic operations,
function calls, or function block calls.

The name of the operation or function, or the type of function block is written within
the block rectangle. In case of a function block call, the name of the called instance
must be written upon the block rectangle, such as in the example below:

The data flow may represent values of any data type. All connections must be from
input and outputs points having the same data type. In case of a boolean connection,
you can use a connection link terminated by a small circle, tat indicates a boolean
negation of the data flow. Below is an example:

(* use of a negated link: Q is IN1 AND NOT IN2 *)

The data flow must be understanded from teh left to the right and from the top to the
bottom. It is possible to use labels and jumps to change the default data flow
execution.

LD symbols
LD symbols may also be entered in FBD diagrams and linked to FBD objects. Refer
to the following sections for further information about components of the LD
language:

Contacts
Coils
Power Rails

Special vertical lines are available in FBD language for representing the merging of
LD parallel lines. Such vertical lines represent a OR operation between the connected
inputs. Below is an example of an OR vertical line used in a FBD diagram:

www.imopc.com 108

http://www.imopc.com/

www.imopc.com 109

http://www.imopc.com/

LD

Ladder Diagram (LD)
A Ladder Diagram is a list of rungs. Each rung represents a boolean data flow from a
power rail on the left to a power rail on the right. The left power rail represents the
TRUE state. The data flow must be understood from the left to the right. Each symbol
connected to the rung either changes the rung state or performs an operation. Below
are posible graphic items to be entered in LD diagrams:

Power Rails
Contacts and Coils
Operations, Functions and Function blocks, represented by rectangular blocks
Labels and Jumps

Use of the "EN" input and the "ENO" output for blocks
The rung state in a LD diagram is always boolean. Blocks are connected to the rung
with their first input and output. This implies that special "EN" and "ENO" input and
output are added to the block if its first input or output is not boolean.

The "EN" input is a condition. It means that the operation represented by the block is
not performed if the rung state (EN) is FALSE. The "ENO" output always represents
the sane status as the "EN" input: the rung state is not modified by a block having an
ENO output.

Below is the example of the "XOR" block, having boolean inputs and outputs, and
requiring no EN or ENO pin:

(* First input is the rung. The rung is the output *)

Below is the example of the ">" (greater than) block, having non boolean inputs and a
boolean output. This block has an "EN" input in LD language:

(* The comparison is executed only if EN is TRUE *)

Finally, below is the example of an adidition, having only numerical arguments. This
block has both "EN" and "ENO" pins in LD language:

www.imopc.com 110

http://www.imopc.com/

(* The addition is executed only if EN is TRUE *)

(* ENO is equal to EN *)

www.imopc.com 111

http://www.imopc.com/

Contacts

Coils | Power Rails

Contacts are basic graphic elements of the LD language. A contact is associated to a
boolean variable written upon its graphic symbol.

A contact sets the state of the rung on its right side, according to the value of the
associated variable to itself and the rung state on its left side i.e. If power flows from
the left side and the contact value is True, then power will flow to the right side of the
contact.

Below are the possible contact symbols and how they change the rung state:

Normal: the rung state on the right is the boolean AND between the rung
state on the left and the associated variable.

Negated: the rung state on the right is the boolean AND between the rung
state on the left and the negation of the associated variable.

Positive pulse: the rung state on the right is TRUE only when the rung
state on the left is TRUE and the associated variable changes from FALSE
to TRUE (rising edge).

Negative pulse: the rung state on the right is TRUE only when the rung
state on the left is TRUE and the associated variable changes from TRUE
to FALSE (falling edge).

Two serial normal contacts represent an AND operation.

Two contacts in parallel represent an OR operation.

www.imopc.com 112

http://www.imopc.com/

Coils

Contacts | Power Rails

Coils are basic graphic elements of the LD language. A coil is associated to a boolean
variable written upon its graphic symbol. A coil performs a change of the associated
variable according to the rung state on its left side i.e. A coil is energized or de-
energized based upon the power flow to it from the rung to which it is associated.

Below are the possible coil symbols and how they change the rung state:

Normally Open: The associated variable is forced to the value of the rung
state on the left of the coil.

Normally Closed: The associated variable is forced to the negation of the
rung state on the left of the coil.

Set: The associated variable is forced to TRUE if the rung state on the left
goes TRUE. It will remain forced to TRUE even if the power flow through
the associated rung becomes inactive.(No action if the rung state is FALSE).

Reset: The associated variable is forced to FALSE if the rung state on the
left goes TRUE. It will remain forced to FALSE even if the power flow
through the associated rung becomes inactive (No action if the rung state is
FALSE)

Positive Triggered: The associated variable stays TRUE for one cycle after
the rising-edge is detected for the associated rung. It will go back to FALSE
in the next execution cycle.

Negative Triggered: The associated variable stays TRUE for one cycle after
the falling-edge is detected for the associated rung. It will go back to
FALSE in the next execution cycle.

Coils may be connected in parallel if a single rung is supposed to activate more than
one coil.

www.imopc.com 113

http://www.imopc.com/

Power Rails

Contacts | Coils

Vertical power rails are used in LD language for designing the limits of a rung.

The power rail on the left represents the TRUE value and initiates the rung state. The
power rail on the right receives connections from the coils and has no influence on the
execution of the program.

Power rails can also be used in FBD language. Only boolean objects can be connected
to left and right power rails. Power rails can be resized before elements are connected
to them.

www.imopc.com 114

http://www.imopc.com/

Structured Text (ST)
ST is a structured literal programming language. A ST program is a list of statements.
Each statement describes an action and must end with a semi-colon (";").

The presentation of the text has no meaning for a ST program. You can insert blank
characters and line breaks where you want in the program text.

Comments
Comment texts can be entered anywhere in a ST program. Comment texts have no
meaning for the execution of the program. A comment text must begin with "(*" and
end with "*)". Comments can be entered on sereval lines (i.e. a comment text may
include line breaks). Coment texts cannot be nested.

Expressions
Each statement describes an action and may include evaluation of complex
expressions. An expression is evaluated:

• from the left to the right
• according to the default priority order of operators<>
• the default priority can be changed using parenthesis

Arguments of an expression can be:

• declared variables
• constant expressions
• function calls

Statements
Below are available basic statements that can be entered in a ST program:

• assignment
• function block calling

Below are the available conditional statements in ST language:

• IF / THEN / ELSE (simple binary switch)
• CASE (enumarated switch)

Below are the available statements for describing loops in ST language:

• WHILE (with test on loop entry)
• REPEAT (with test on loop exit)
• FOR (enumeration)

www.imopc.com 115

http://www.imopc.com/

Instruction List (IL)
A program written in IL language is a list of instructions. Each instruction is written
on one line of text. An instruction may have one or more operands. Operands are
variables or constant expressions. Each instruction may begin with a label, followed
by the ":" character. Labels are used as destination for jump instructions.

i³ Configurator allows you to mix ST and IL languages in textual program. ST is the default
language. When you enter IL instructions, the program must be entered between "
BEGIN_IL" and "END_IL" keywords, such as in the following example
BEGIN_IL
 LD var1
 ST var2
END_IL

Comments
Comment texts can be entered at the end of a line containing an instruction. Comment
texts have no meaning for the execution of the program. A comment text must begin
with "(*" and end with "*)". Comments may also be entered on empty lines (with no
instruction), and on sereval lines (i.e. a comment text may include line breaks).
Comment texts cannot be nested.

Data flow
An IL complete statement is made of instructions for:
first: evaluating an expression (called current result) then: use the current result for
performing actions

Evaluation of expressions
The order of instructions in the program is the one used for evaluating expressions,
unless parenthesis are inserted. Below are the available instructions for evaluation of
expressions:
instruction operand meaning
LD / LDN any type loads the operand in the current result
AND (&) boolean AND between the operand and the current result
OR / ORN boolean OR between the operand and the current result
XOR / XORN boolean XOR between the operand and the current result
ADD numerical adds the operand and the current result
SUB numerical subtract the operand from the current result
MUL numerical multiply the operand and the current result
DIV numerical adds the current result by the operand
GT numerical compares the current result with the operand
GE numerical compares the current result with the operand
LT numerical compares the current result with the operand
LE numerical compares the current result with the operand

www.imopc.com 116

http://www.imopc.com/

EQ numerical compares the current result with the operand
NE numerical compares the current result with the operand
Function call func. arguments calls a function
Parenthesis changes the execution order
Notes: Instructions suffixed by "N" uses the boolean negation of the operand.

Actions
The following instructions perform actions according to the value of currrent result.
Some of these instructions do not need a current result to be evaluated:
instruction operand meaning
ST / STN any type stores the current result in the operand
JMP label jump to a label - no current result needed
JMPC / JMPCN label jump to a label if the current result is TRUE
S boolean sets the operand to TRUE if the current result is TRUE
R boolean sets the operand to FALSE if the current result is TRUE
CAL f. block calls a function block (no current result needed)
CALC /
CALCN numerical calls a function block if the current result is TRUE

Notes: Instructions suffixed by "N" uses the boolean negation of the operand.

www.imopc.com 117

http://www.imopc.com/

Program Organization Units
An application is a list of programs. Programs are executed sequentially within the
target cycle, according to the following model:

 Begin cycle
 | exchange I/Os
 | execute first program
 | ...
 | execute last program
 | wait for cycle time to be elapsed
 End Cycle

Programs are executed according to the order defined by the user. All SFC programs
must be grouped (it is not possible to insert a program in FBD, LD, ST or IL in
between two SFC programs). The number of programs in an application is limited to
255. Each program is entered using a language chosen when the program is created.
Possible languages are Sequential Function Chart (SFC), Function Block Diagram
(FBD), Ladder Diagram (LD), Structured Text (ST) or Instruction List (IL).

Programs must have unique names. The name cannot be a reserved keyword of the
programming languages and cannot have the same name as a standard or "C" function
or function block. A program should not have the same name as a declared variable.
The name of a program should begin by a letter or an underscore ("_") mark, followed
by letters, digits or underscore marks. It is not allowed to put two consecutive
underscores within a name. Naming is case insensitive. Two names with different
cases are considered as the same.

Sub-programs
The list of programs may be completed by "Sub-programs". Sub-programs are
described using FBD, LD, ST or IL language, and can be called by the programs of
the application. Input and output parameters plus local variables of a sub-program are
declared in the Program Variables Window as local variables of the sub-program.

A sub-program may call another sub-program.

Local variables of a sub program are not instanciated. This means that the sub-
programs always work on the same set of local variables. Local variables of a sub-
program keep their value among various calls. The code of a sub-program is not
duplicated when called several times by parent programs.

A sub-program cannot have more than 32 input parameters or 32 output parameters. A
parameter of a sub-program cannot be an instance of a function block.

www.imopc.com 118

http://www.imopc.com/

Data Types
Below are the available basic data types:

BOOL
SINT
USINT
BYTE
INT
UINT
WORD
DINT
UDINT
DWORD
REAL
TIME
STRING

Boolean (bit) - can be FALSE or TRUE - stored on 1 byte
Small signed integer on 8 bits (from -128 to +127)
Small unsigned integer on 8 bits (from 0 to +255)
Same as USINT
Signed integer on 16 bits (from -32768 to +32767)
Unsigned integer on 16 bits (from 0 to +65535)
Same as UINT
Signed integer on 32 bits (from -2147483648 to +2147483647)
Unsigned integer on 32 bits (from 0 to +4294967295)
Same as UDINT
Single precision floating point - stored on 32 bits
Time of day - less than 24h - accuracy is 1ms
Variable length string with declared maximum length
The declared maximum length cannot exceed 255 characters

www.imopc.com 119

http://www.imopc.com/

Variables
All variables used in programs must be first declared in the Program Variables
Window. Each variable belongs to a group and is must be identified by a unique name
within its group.

Groups
A group is a set of variables. A group either refers to a physical class of variables, or
identifies the variables local to a program or user defined function block. Below are
the possible groups:

GLOBAL Internal variables known by all programs
RETAIN Non volatile internal variables known by all programs

PROGRAMxxx All internal variables local to a program
(the name of the group is the name of the program)

Data type and dimension
Each variable must have a valid data type. It can be either a basic data type or a
function block. In that case the variable is an instance of the function block. Instances
of function blocks can refer either to a standard or "C" embedded block.

If the selected data type is STRING, you must specify a maximum length, that cannot
exceed 255 characters.

Refer to the list of available data types for more informartion. Refer to the section
describing function blocks for further information about how to use a function
instance.

Additionally, you can specify dimension(s) for an internal variable, in order to declare
an array. Arrays have at most 3 dimensions. All indexes are 0 based. For instance, in
case of single dimension array, the first element is always identified by
ArrayName[0]. You cannot declare arrays of function block instances. The total
number of items in an array (merging all dimensions) cannot exceed 65535.

Naming a variable
A variable must be identified by a unique name within its parent group. The variable
name cannot be a reserved keyword of the programming languages and cannot have
the same name as a standard or "C" function or function block. A variable should not
have the same name as a program or a user defined function block.
The name of a variable should begin by a letter or an underscore ("_") mark, followed
by letters, digits or underscore marks. It is not allowed to put two consecutive
underscores within a varable name. Naming is case insensitive. Two names with
different cases are considered as the same.

www.imopc.com 120

http://www.imopc.com/

Attributes of a variable
For each internal variable, you can select the "Read Only".

www.imopc.com 121

http://www.imopc.com/

Arrays
You can specify dimension(s) for internal variables, in order to declare arrays. All
indexes are 0 based. For instance, in case of single dimension array, the first element
is always identified by ArrayName[0].

To declare an array, enter its dimension in the corresponding column of the Program
Variables Window. For a multi-dimension array, enter dimensions separated by
comas (ex: 2,10,4).

Use in ST and IL languages:
To specify an item of an array in ST and IL language, enter the name of the array
followed by the index(es) entered between "[" and "]" characters. For muldimension
arrays, enter indexes separated by comas. Indexs may be either constant or complex
ewpressions. Below are some examples in ST language:
TheArray[1,7] := value;
result := SingleArray[i + 2];

Use in FBD and LD languages:
In graphical languages, the following blocks are available for managing array
elements:

[I]>> get value of an item in a single dimension array
[I, J]>> get value of an item in a two dimension array
[I, J, K]>> get value of an item in a three dimension array
>>[I] set value of an item in a single dimension array
>>[I, J] set value of an item in a two dimension array
>>[I, J, K] set value of an item in a three dimension array

For "get" blocks, the first input is the array and the output is the value of the item.
Other inputs are indexes in the array.

For "put" blocks, the first input is the forced value and the second input is the array.
Other inputs are indexes in the array.

Restrictions:
• Arrays have at most 3 dimensions.
• All indexes are 0 based.
• You cannot declare arrays of function block instances or structures.
• The total number of items in an array (merging all dimensions) cannot exceed

65535.
• Array elements cannot be specified on a contact or a coil

www.imopc.com 122

http://www.imopc.com/

Constant Expressions
Constant expressions can be used in all languages for assigning a variable with a
value. All constant expressions have a well defined data type according to their
semantics. If you program an operation between variables and constant expressions
having unconsistent data types, it will lead to syntactic errors when the program is
compiled. Below are the syntactic rules for constant expressions according to possible
data types:

BOOL: Boolean
There are only two possible boolean constant expressions. They are reserved
keywords TRUE and FALSE.

SINT: Small (8 bit) Integer
Small integer constant expressions are valid integer values(between -128 and 127) and
must be prefixed with "SINT#'. All integer expressions having no prefix are
considered as DINT integers.

USINT / BYTE: Unsigned 8 bit Integer
Unsigned small integer constant expressions are valid integer values(between 0 and
255) and must be prefixed with "USINT#'. All integer expressions having no prefix
are considered as DINT integers.

INT: 16 bit integer
16 bit integer constant expressions are valid integer values(between -32768 and
32767) and must be prefixed with "INT#'. All integer expressions having no prefix
are considered as DINT integers.

UINT / WORD: Unsigned 16 bit integer
Unsigned 16 bit integer constant expressions are valid integer values(between 0 and
255) and must be prefixed with "UINT#'. All integer expressions having no prefix are
considered as DINT integers.

DINT: 32 bit (default) integer
32 bit integer constant expressions must be valid numbers between -2147483648 to
+2147483647. DINT is the default size for integers: such constant expressions do not
need any prefix. You can use "2#", "8#" or "16#" prefixes for specifying a number in
respectively binary, octal or hexadecimal basis.

UDINT / DWORD: Unsigned 32 bit integer

www.imopc.com 123

http://www.imopc.com/

Unsigned 32 bit integer constant expressions are valid integer values(between 0 and
4294967295) and must be prefixed with "UDINT#'. All integer expressions having no
prefix are considered as DINT integers.

REAL: Single precision floating point value
Real constant expressions must be valid number, and must include a dot ("."). If you
need to enter a real expression having an integer value, add ".0" at the end of the
number. You can use "F" or "E" separators for specifying the exponent in case of a
scientist representation. REAL is the default precision for floating points: such
expressions do not need any prefix.

TIME: Time of day
Time constant expressions represent durations that must be less than 24 hours.
Expressions must be prefixed by either "TIME#" or "T#". They are expressed as a
number of hours followed by "h", a number of minutes followed by "m", a number of
seconds followed by "s", and a number of milliseconds followed by "ms". The order
of units (hour, minutes, seconds, milliseconds) must be respected. You cannot insert
blank characters in the time expression. There must be at least one valid unit letter in
the expression.

STRING: Character string
String expressions must be written between single quote marks. The length of the
string cannot exceed 255 characters. You can use the following sequences to represent
a special or not printable character within a string:
$$
$'
$T
$R
$L
$N
$P
$xx

a "$" character
a single quote
a tab stop (ASCII code 9)
a carriage return character (ASCII code 13)
a line feed character (ASCII code 10)
carriage return plus line feed characters (ASCII codes 13 and 10)
a page break character (ASCII code 12)
any character (xx is the ASCII code expressed on two hexadecimal digits

Examples
Below are some examples of valid contant expressions

TRUE
FALSE
SINT#127
INT#2000
123456
16#abcd
0.0
1.002E3

TRUE boolean expression
FALSE boolean expression
small integer
16 bit integer
DINT (32 bit) integer
DINT integer in hexadecimal basis
0 expressed as a REAL number
1002 expressed as a REAL number in scientist format

www.imopc.com 124

http://www.imopc.com/

T#23h59m59s999ms
TIME#0s
T#1h123ms
'hello'
'name$Tage'
'I$'m here'
'x$00y'

maximum TIME value
null TIME value
TIME value with some units missing
character string
character string with two words separated by a tab
character string with a quote inside (I'm here)
character string with two characters separated by a null character
(ASCII code 0)

Below are some examples of typical errors in contant expressions

BooVar := 1;
1a2b
T#12
'I'm here'
hello

0 and 1 cannot be used for booleans
basis prefix ("16#") omitted
Time unit missing
quote within a string with "$" mark omitted
quotes omitted around a character string

www.imopc.com 125

http://www.imopc.com/

Conditional Compiling
The compiler supports conditional compiling directives in ST, IL, LD, and FBD
languages. Conditional compiling directives condition the inclusion of a part of the
program in the generated code. Conditional compiling is an easy way to manage
several various configurations and options in a unique application programming.

Conditional compiling uses definitions as conditions. Below is the main syntax:

ifdef CONDITION
 statementsYES...
#else
 statementsNO...
endif

If CONDITION has been defined using #define syntax, then the " statementsYES"
part is included in the code, else the " statementsNO" part is included. The "#else"
statement is optional.

In ST and IL text languages, directives must be entered alone on one line line of text.
In FBD language, directives must be entered as the text of network breaks. In LD
language, directives must be entered on comment lines.

www.imopc.com 126

http://www.imopc.com/

Basic Operations

Basic Operations
Below are the language features for basic data manipulation:

Variable assignment
Bit access
Parenthesis
Calling a function
Calling a function block
Calling a sub-program

Below are the language features for controlling the execution of a program:

Labels
Jumps
RETURN

Below are the structured statements for controlling the execution of a program:

IF
WHILE
REPEAT
FOR
CASE
EXIT

conditional execution of statements
repeat statements while a condition is TRUE
repeat statements until a condition is TRUE
execute iterations of statements
switch to one of various possible statements
exit from a loop instruction

www.imopc.com 127

http://www.imopc.com/

Access to Bits of an Integer
You can directly specify a bit within an integer variable in expressions and diagrams,
using the following notation:

Variable.BitNo

Where:

Variable: is the name of an integer variable
BitNo: is the number of the bit in the integer.

The variable can have one of the following data types:

SINT, USINT, BYTE (8 bits from %x.1 to %x.8)
INT, UINT, WORD (16 bits from %x.1 to %x.16)
DINT, UDINT, DWORD (32 bits from %x.1 to %x.32)

1 always represents the least significant bit.

Example:
%R1.1, %R1000.32

www.imopc.com 128

http://www.imopc.com/

Parenthesis ()
Assignment

Operator - force the evaluation order in a complex expression.

Remarks
Parenthesis are used in ST and IL language for changing the default evaluation order
of various operations within a complex expression. For instance, the default
evaluation of "2 * 3 + 4" expression in ST language gives a result of 10 as "*"
operator has highest priority. Changing the expression as "2 * (3 + 4)" gives a result
of 14. Parenthesis can be nested in a complex expression.

Below is the default evaluation order for ST language operations (1st is highest
priority):

Unary operators: - NOT
Multiply/Divide: * /
Add/Subtract: + -
Comparisons: < > <= >= = <>
Boolean And: & AND
Boolean Or: OR
Exclusive OR: XOR

In IL language, the default order is the sequence of instructions. Each new instruction
modifies the current result sequentially. In IL language, the opening parenthesis "(" is
written between the instruction and its operand. The closing parenthesis ")" must be
written alone as an instruction without operand.

ST Language
Q := (IN1 + (IN2 / IN 3)) * IN4;

FBD Language
Not available

LD Language
Not available

IL Language
Op1: LD(IN1
 ADD(IN2
 MUL IN3
)
 SUB IN4

www.imopc.com 129

http://www.imopc.com/

)
 ST Q (* Q is: (IN1 + (IN2 * IN3) - IN4) *)

www.imopc.com 130

http://www.imopc.com/

Calling a Function
A function calculates a result according to the current value of its inputs. Unlike a
function block, a function has no internal data and is not linked to declared instances.
A function has only one output: the result of the function. A function can be:

a standard function (SHL, SIN...)
a function written in "C" language and embedded on the target

ST Language
To call a function block in ST, you have to enter its name, followed by the input
parameters written between parenthesis and separated by comas. The function call
may be inserted into any complex expression. a function call can be used as an input
parameter of another function. The following example demonstrates a call to "ODD"
and "SEL" functions:

(* the following statement converts any odd integer value into the nearest even integer
*)

iEvenVal := SEL (ODD(iValue), iValue, iValue+1);

FBD and LD Languages
To call a function block in FBD or LD languages, you just need to insert the function
in the diagram and to connect its inputs and output.

IL Language
To call a function block in IL language, you must load its first input parameter before
the call, and then use the function name as an instruction, followed by the other input
parameters, separated by comas. The result of the function is then the current result.
The following example demonstrates a call to "ODD" and "SEL" functions:

(* the following statement converts any odd integer into "0" *)

Op1: LD iValue
 ODD
 SEL iValue, 0
 ST iResult

www.imopc.com 131

http://www.imopc.com/

Calling a Function Block CAL CALC CALNC CALCN
A function block groups an algorithm and a set of private data. It has inputs and
outputs. A function block can be:

a standard function block (RS, TON10mS...) a block written in " C" language and embedded
on the target

To use a function block, you have to declare an instance of the block as a variable,
identified by a unique name. Each instance of a function block as its own set of
private data and can be called separately. A call to a function block instance processes
the block algorithm on the private data of the instance, using the specified input
parameters.

ST Language
To call a function block in ST, you have to specify the name of the instance, followed
by the input parameters written between parenthesis and separated by comas. To have
access to an output parameter, use the name of the instance followed by a dot '.' and
the name of the wished parameter. The following example demonstrates a call to an
instance of CTU function block:

(* MyCounter is declared as an instance of CTU *)

MyCounter(bCU, bReset, 200); (* calls the function block *)
MaxCountReached:= MyCounter.Q;
CurrentCount := MyTimer.CV;

FBD and LD Languages
To call a function block in FBD or LD languages, you just need to insert the block in
the diagram and to connect its inputs and outputs. The name of the instance must be
specified upon the rectangle of the block.

IL Language
To call a function block in IL language, you must use the CAL instruction, and use a
declared instance of the function block. The instance name is the operand of the CAL
instruction, followed by the inut parameters written between parenthesis and separated
by comas. Alternatively the CALC, CALCN or CALNC conditional instructions can
be used:

CAL Calls the function block
CALC Calls the function block if the current result is TRUE
CALNC Calls the function block if the current result is FALSE
CALCN same as CALNC

The following example demonstrates a call to an instance of CTU function block:

(* MyCounter is declared as an instance of CTU *)

www.imopc.com 132

http://www.imopc.com/

Op1: CAL MyCounter (bCU, bReset, 200)
 LD MyCounter.Q
 ST MaxCountReached
 LD MyCounter.CV
 ST CurrentCount

Op2: LD bCond
 CALC MyCounter (bCU, bReset, 200) (* called only if bCond is TRUE *)
Op3: LD bCond
 CALNC MyCounter (bCU, bReset, 200) (* called only if bCond is FALSE *)

www.imopc.com 133

http://www.imopc.com/

Calling a Sub-Program
A sub-program is called by another program. Unlike function blocks, local variables
of a sub-program are not instanciated, and thus you do not need to declare instances.
A call to a sub-program processes the block algorithm using the specified input
parameters. Output parameters can then be accessed.

ST Language
To call a sub-program in ST, you have to specify its name, followed by the input
parameters written between parenthesis and separated by comas. To have access to an
output parameter, use the name of the sub-program followed by a dot '.' and the name
of the desired parameter:

MySubProg (i1, i2); (* calls the sub-program *)
Res1 := MySubProg.Q1;
Res2 := MySubProg.Q2;
Alternatively, if a sub-program has one and only one output parameter, it can be
called as a function in ST language:
Res := MySubProg (i1, i2);

FBD and LD Languages
To call a sub-program in FBD or LD languages, you just need to insert the block in
the diagram and to connect its inputs and outputs.

IL Language
To call a sub-program in IL language, you must use the CAL instruction with the
name of the sub-program, followed by the input parameters written between
parenthesis and separated by comas. Alternatively the CALC, CALCN or CALNC
conditional instructions can be used:

CAL Calls the sub-program
CALC Calls the sub-program if the current result is TRUE
CALNC Calls the sub-program if the current result is FALSE
CALCN same as CALNC

Op1: CAL MySubProg (i1, i2)
 LD MySubProg.Q1
 ST Res1
 LD MySubProg.Q2
 ST Res2

www.imopc.com 134

http://www.imopc.com/

Labels
Jumps | RETURN

Statement - Destination of a Jump instruction.

Remarks
Labels are used as a destination of a jump instruction in FDB, LD or IL language.
Labels and jumps cannot be used in structured ST language. A label must be
represented by a unique name, followed by a colon (":"). In FBD language, labels can
be inserted anywhere in the diagram, and are connected to nothing. In LD language, a
label must identify a rung, and is shown on the left side of the rung. In IL language,
labels are destination for JMP, JMPC, JMPCN and JMPNC instructions. They must
be written before the instruction at the beginning of the line, and should index the
beginning of a valid IL statement: LD (load) instruction, or unconditional instructions
such as CAL, JMP or RET. The label can also be written alone on a line before the
indexed instruction. In all languages, it is not mandatory that a label be a target of a
jump instruction. You can also use label for marking parts of the programs in order to
increase its readability.

ST Language
Not available

FBD Language
(* In this example the TON100mS block will not be called if bEnable is TRUE *)

LD Language

www.imopc.com 135

http://www.imopc.com/

(* In this example the second rung will be skipped if IN1 is TRUE *)

IL Language
Start: LD IN1 (* unused label - just for readability *)
 JMPC TheRest (* Jump to "TheRest" if IN1 is TRUE *)

 LD IN2 (* these two instructions are not executed *)
 ST Q2 (* if IN1 is TRUE *)

TheRest: LD IN3 (* label used as the jump destination *)
 ST Q3

www.imopc.com 136

http://www.imopc.com/

Jumps JMP JMPC JMPNC JMPCN
Labels | RETURN

Statement - Jump to a label.

Remarks
A jump to a label branches the execution of the program after the specified label.
Labels and jumps cannot be used in structured ST language. In FBD language, a jump
is represented by the ">>" symbol followed by the label name. The input of the ">>"
symbol must be connected to a valid boolean signal. The jump is performed only if
the input is TRUE. In LD language, the ">>" symbol, followed by the target label
name, is used as a coil at the end of a rung. The jump is performed only if the rung
state is TRUE. In IL language, JMP, JMPC, JMPCN and JMPNC instructions are
used to specify a jump. The destination label is the operand of the jump instruction.
Warning: backward jumps may lead to infinite loops that block the target cycle.

ST Language
Not available

FBD Language
(* In this example the TON100mS block will not be called if bEnable is TRUE *)

LD Language
(* In this example the second rung will be skipped if IN1 is TRUE *)

www.imopc.com 137

http://www.imopc.com/

IL Language
Below is the meaning of possible jump instructions:

>JMP Jump always
JMPC Jump if the current result is TRUE
JMPNC Jump if the current result is FALSE
JMPCN Same as JMPNC
Start: LD IN1
 JMPC TheRest (* Jump to "TheRest" if IN1 is TRUE *)

 LD IN2 (* these three instructions are not executed *)
 ST Q2 (* if IN1 is TRUE *)
 JMP TheEnd (* unconditional jump to "TheEnd" *)

TheRest: LD IN3
 ST Q3
TheEnd:

www.imopc.com 138

http://www.imopc.com/

RETURN RET RETC RETNC RETCN
Labels | Jumps

Statement - Jump to the end of the program.

Remarks
The "RETURN" statement jumps to the end of the program. In FBD language, the
return statement is represented by the "<RETURN>" symbol. The input of the symbol
must be connected to a valid boolean signal. The jump is performed only if the input
is TRUE. In LD language, the "<RETURN>" symbol is used as a coil at the end of a
rung. The jump is performed only if the rung state is TRUE. In IL language, RET,
RETC, RETCN and RETNC instructions are used.

When used within an action block of a SFC step, the RETURN statement jumps to the
end of the action block.

ST Language
IF NOT bEnable THEN
 RETURN;
END_IF;
(* the rest of the program will not be executed
 if bEnabled is FALSE *)

FBD Language
(* In this example the TON100mS block will not be called if bIgnore is TRUE *)

LD Language
(* In this example the second rung will be skipped if ENABLE is FALSE *)

www.imopc.com 139

http://www.imopc.com/

IL Language
Below is the meaning of possible instructions:

RET Jump to the end always
RETC Jump to the end if the current result is TRUE
RETNC Jump to the end if the current result is FALSE
RETCN Same as RETNC

Start: LD IN1
 RETC (* Jump to the end if IN1 is TRUE *)

 LD IN2 (* these instructions are not executed *)
 ST Q2 (* if IN1 is TRUE *)
 RET (* Jump to the end unconditionally *)

 LD IN3 (* these instructions are never executed *)
 ST Q3

www.imopc.com 140

http://www.imopc.com/

IF THEN ELSE ELSIF END_IF
WHILE | REPEAT | FOR | CASE | EXIT

Statement - Contitional execution of statements.

Syntax
 IF <BOOL expression> THEN
 <statements>
 ELSIF <BOOL expression> THEN
 <statements>
 ELSE
 <statements>
 END_IF;

Remarks
The IF statement is available in ST only. The execution of the statements is
conditioned by a boolean expression. ELSIF and ELSE statements are optional. There
can be several ELSIF statements.

ST Language
(* simple condition *)
IF bCond THEN
 Q1 := IN1;
 Q2 := TRUE;
END_IF;

(* binary selection *)
IF bCond THEN
 Q1 := IN1;
 Q2 := TRUE;
ELSE
 Q1 := IN2;
 Q2 := FALSE;
END_IF;

(* enumerated conditions *)
IF bCond1 THEN
 Q1 := IN1;
ELSIF bCond2 THEN
 Q1 := IN2;
ELSIF bCond3 THEN
 Q1 := IN3;
ELSE
 Q1 := IN4;
END_IF;

www.imopc.com 141

http://www.imopc.com/

FBD Language
Not available

LD Language
Not available

IL Language
Not available

www.imopc.com 142

http://www.imopc.com/

WHILE DO END_WHILE
IF | REPEAT | FOR | CASE | EXIT

Statement - Repeat a list of statements.

Syntax
 WHILE <BOOL expression> DO
 <statements>
 END_WHILE ;

Remarks
The statements between "DO" and "END_WHILE" are executed while the boolean
expression is TRUE. The condition is evaluated before the statements are executed. If
the condition is FALSE when WHILE is first reached, statements are never executed.

Warning: Loop instructions may lead to infinite loops that block the target cycle.
Never test the state of an input in the condition as the input will not be refreshed
before the next cycle.

ST Language
iPos := 0;
WHILE iPos < iMax DO
 MyArray[iPos] := 0;
 iNbCleared := iNbCleared + 1;
END_WHILE;

FBD Language
Not available

LD Language
Not available

IL Language
Not available

www.imopc.com 143

http://www.imopc.com/

REPEAT UNTIL END_REPEAT
IF | WHILE | FOR | CASE | EXIT

Statement - Repeat a list of statements.

Syntax
 REPEAT
 <statements>
 UNTIL <BOOL expression> END_REPEAT;

Remarks
The statements between "REPEAT" and "UNTIL" are executed until the boolean
expression is TRUE. The condition is evaluated after the statements are executed.
Statements are executed at least once.

Warning: Loop instructions may lead to infinite loops that block the target cycle.
Never test the state of an input in the condition as the input will not be refreshed
before the next cycle.

ST Language
iPos := 0;
REPEAT
 MyArray[iPos] := 0;
 iNbCleared := iNbCleared + 1;
 iPos := iPos + 1;
UNTIL iPos = iMax END_REPEAT;

FBD Language
Not available

LD Language
Not available

IL Language
Not available

www.imopc.com 144

http://www.imopc.com/

FOR TO BY END_FOR
IF | WHILE | REPEAT | CASE | EXIT

Statement - Iteration of statement execution.

Syntax
 FOR <index> := <minimum> TO <maximum> BY <step> DO
 <statements>
 END_FOR;

index = DINT internal variable used as index
minimum = DINT expression: initial value for index
maximum = DINT expression: maximum allowed value for index
step = DINT expression: increasing step of index after each iteration (default is 1)

Remarks
The "BY <step>" statement can be omitted. The default value for the step is 1.

ST Language
iArrayDim := 10;

(* resets all items of the array to 0 *)
FOR iPos := 0 TO (iArrayDim - 1) DO
 MyArray[iPos] := 0;
END_FOR;

(* set all items with odd index to 1 *)
FOR iPos := 1 TO 9 BY 2 DO
 MyArray[ipos] := 1;
END_FOR;

FBD Language
Not available

LD Language
Not available

IL Language
Not available

www.imopc.com 145

http://www.imopc.com/

CASE OF ELSE END_CASE
IF | WHILE | REPEAT | FOR | EXIT

Statement - switch between enumerated statements.

Syntax
CASE <DINT expression> OF
<value> :
 <statements>
<value> , <value> :
 <statements>;
<value> .. <value> :
 <statements>;
ELSE
 <statements>
END_CASE;

Remarks
All enumerated values correspond to the evaluation of the DINT expression and are
possible cases in the execution of the statements. The statements specified after the
ELSE keyword are executed if the expression takes a value that is not enumerated in
the switch. For each case, you must specify either a value, or a list of possible values
separated by comas (",") or a range of values specified by a " min .. max" interval.
You must enter space characters before and after the ".." separator.

ST Language
(* this example check first prime numbers *)
CASE iNumber OF
0 :
 Alarm := TRUE;
 AlarmText := '0 gives no result';
1 .. 3, 5 :
 bPrime := TRUE;
4, 6 :
 bPrime := FALSE;
ELSE
 Alarm := TRUE;
 AlarmText := 'I don't know after 6 !';
END_CASE;

FBD Language
Not available

www.imopc.com 146

http://www.imopc.com/

LD Language
Not available

IL Language
Not available

www.imopc.com 147

http://www.imopc.com/

EXIT
IF | WHILE | REPEAT | FOR | CASE

Statement - Exit from a loop statement

Remarks
The EXIT statement indicates that the current loop (WHILE, REPEAT or FOR) must
be finished. The execution continues after the END_WHILE, END_REPEAT or
END_FOR keyword or the loop where the EXIT is. EXIT quits only one loop and
cannot be used to exit at the same time several levels of nested loops.

Warning: loop instructions may lead to infinite loops that block the target cycle.

ST Language
(* this program searches for the first non null item of an array *)
iFound = -1; (* means: not found *)
FOR iPos := 0 TO (iArrayDim - 1) DO
 IF iPos <> 0 THEN
 iFound := iPos;
 EXIT;
 END_IF;
END_FOR;

FBD Language
Not available

LD Language
Not available

IL Language
Not available

www.imopc.com 148

http://www.imopc.com/

Function Blocks

Function Blocks
The following topics detail the set of programming features and standard blocks:

Boolean Operations
Arithmetic Operations
Standard Operations
Comparison Operations
Mathematical Operations
Advanced Operations
Register Operations
Conversion Operations
String Operations
CANOpen Operations
Screen Operations
Serial Operations
Removable Media Operations
Counter Operations
Time and Date Operations
Move Operations
PID Operations
Network Operations
Floating PID Operations
Timer Counter Operations

www.imopc.com 149

http://www.imopc.com/

Boolean Operations

Boolean Operations
Below are the standard operators for managing booleans:

Boolean AND
Boolean OR
XOR
NOT
S
R

performs a boolean AND
performs a boolean OR
performs an exclusive OR
performs a boolean negation of its input
force a boolean output to TRUE
force a boolean output to FALSE

Below are the available blocks for managing boolean signals:

Reset Dominant
Bistable
Set Dominant Bistable
Rising Pulse Detection
Falling Pulse
Detection

reset dominant bistable
set dominant bistable
rising pulse detection
falling pulse detection

www.imopc.com 150

http://www.imopc.com/

AND ANDN &
Operator - Performs a logical AND of all inputs.

Inputs
IN1 : BOOL First boolean input
IN2 : BOOL Second boolean input

Outputs
Q : BOOL Boolean AND of all inputs

Truth table

IN1 IN2 Q
0 0 0
0 1 0
1 0 0
1 1 1

Remarks
In FBD language, the block may have up to 255 inputs. The block is called "&" in
FBD language. In LD language, an AND operation is represented by serialized
contacts. In IL language, the AND instruction performs a logical AND between the
current result and the operand. The current result must be boolean. The ANDN
instruction performs an AND between the current result and the boolean negation of
the operand. In ST and IL languages, "&" can be used instead of "AND".

ST Language
Q := IN1 AND IN2;
Q := IN1 & IN2 & IN3;

FBD Language

www.imopc.com 151

http://www.imopc.com/

(* the block may have up to 255 inputs *)

LD Language
(* serialized contacts *)

IL Language
Op1: LD IN1
 & IN2 (* "&" or "AND" can be used *)
 ST Q (* Q is equal to: IN1 AND IN2 *)
Op2: LD IN1
 AND IN2
 &N IN3 (* "&N" or "ANDN" can be used *)
 ST Q (* Q is equal to: IN1 AND IN2 AND (NOT IN3) *)

See Also
OR XOR NOT

www.imopc.com 152

http://www.imopc.com/

F_TRIG
Function Block - Falling pulse detection

Inputs
CLK : BOOL Boolean signal

Outputs
Q : BOOLTRUE when the input changes from TRUE to FALSE

Truth table

CLK CLK
prev Q

0 0 0
0 1 1
1 0 0
1 1 0

ST Language
(* MyTrigger is declared as an instance of F_TRIG function block *)
MyTrigger (CLK);
Q := MyTrigger.Q;

FBD Language

LD Language
(* The output signal is activated for one execution cycle, every time the input signal
goes OFF *)
(* the input signal is the rung - the rung is the output *)

www.imopc.com 153

http://www.imopc.com/

IL Language
(* MyTrigger is declared as an instance of F_TRIG function block *)
Op1: CAL MyTrigger (CLK)
 LD MyTrigger.Q
 ST Q

See also
R_TRIG

www.imopc.com 154

http://www.imopc.com/

OR ORN
Operator - Performs a logical OR of all inputs.
Inputs
IN1 : BOOL First boolean input
IN2 : BOOL Second boolean input

Outputs
Q : BOOL Boolean OR of all inputs

Truth table

IN1 IN2 Q
0 0 0
0 1 1
1 0 1
1 1 1

Remarks
In FBD language, the block may have up to 255 inputs. The block is called ">=1" in
FBD language. In LD language, an OR operation is represented by contacts in
parallel. In IL language, the OR instruction performs a logical OR between the current
result and the operand. The current result must be boolean. The ORN instruction
performs an OR between the current result and the boolean negation of the operand.

ST Language
Q := IN1 OR IN2;
Q := IN1 OR IN2 OR IN3;

FBD Language
(* the block may have up to 255 inputs *)

LD Language
(* parallel contacts *)

IL Language
Op1: LD IN1
 OR IN2
 ST Q (* Q is equal to: IN1 OR IN2 *)

www.imopc.com 155

http://www.imopc.com/

Op2: LD IN1
 ORN IN2
 ST Q (* Q is equal to: IN1 OR (NOT IN2) *)

See also
AND XOR NOT

www.imopc.com 156

http://www.imopc.com/

R_TRIG
Function Block - Rising pulse detection

Inputs
CLK : BOOL Boolean signal

Outputs
Q : BOOL TRUE when the input changes from FALSE to TRUE

Truth table

CLK CLK
prev Q

0 0 0
0 1 0
1 0 1
1 1 0

ST Language
(* MyTrigger is declared as an instance of R_TRIG function block *)
MyTrigger (CLK);
Q := MyTrigger.Q;

FBD Language

LD Language
(* The output signal is activated for one execution cycle, every time the input signal
goes ON *)
(* the input signal is the rung - the rung is the output *)

IL Language
(* MyTrigger is declared as an instance of R_TRIG function block *)
Op1: CAL MyTrigger (CLK)
 LD MyTrigger.Q
 ST Q

See also
F_TRIG

www.imopc.com 157

http://www.imopc.com/

RS
Function Block - Reset dominant bistable.

Inputs
SET : BOOL Condition for forcing to TRUE
RESET1 : BOOL Condition for forcing to FALSE (highest priority command)

Outputs
Q1 : BOOL Output to be forced

Truth table

SET RESET1 Q1
prev Q1

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 0

Remarks
The output is unchanged when both inputs are FALSE. When both inputs are TRUE,
the output is forced to FALSE (reset dominant).

ST Language
(* MyRS is declared as an instance of RS function block *)
MyRS (SET, RESET1);
Q1 := MyRS.Q1;

FBD Language

LD Language
(* RESET command is the dominant command in case of both the commands being
active simultaneously*)
(* the SET command is the rung - the rung is the output *)

www.imopc.com 158

http://www.imopc.com/

IL Language
(* MyRS is declared as an instance of RS function block *)
Op1: CAL MyRS (SET, RESET1)
 LD MyRS.Q1
 ST Q1

See also
R S SR

www.imopc.com 159

http://www.imopc.com/

SR
Function Block - Set dominant bistable.

Inputs
SET1 : BOOL Condition for forcing to TRUE (highest priority command)
RESET : BOOL Condition for forcing to FALSE

Outputs
Q1 : BOOL Output to be forced

Truth table

SET1 RESET Q1
prev Q1

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

Remarks
The output is unchanged when both inputs are FALSE. When both inputs are TRUE,
the output is forced to TRUE (set dominant).

ST Language
(* MySR is declared as an instance of SR function block *)
MySR (SET1, RESET);
Q1 := MySR.Q1;

FBD Language

LD Language
(*SET command is the dominant command in case of both the commands being
active simultaneously*)
(* the SET1 command is the rung - the rung is the output *)

www.imopc.com 160

http://www.imopc.com/

IL Language
(* MySR is declared as an instance of SR function block *)
Op1: CAL MySR (SET1, RESET)
 LD MySR.Q1
 ST Q1

See also
R S RS

www.imopc.com 161

http://www.imopc.com/

XOR XORN
Operator - Performs an exclusive OR of all inputs.

Inputs
IN1 : BOOL First boolean input
IN2 : BOOL Second boolean input

Outputs
Q : BOOL Exclusive OR of all inputs

Truth table

IN1 IN2 Q
0 0 0
0 1 1
1 0 1
1 1 0

Remarks
The block is called "=1" in FBD and LD languages. In IL language, the XOR
instruction performs an exclusive OR between the current result and the operand. The
current result must be boolean. The XORN instruction performs an exclusive between
the current result and the boolean negation of the operand.

ST Language
Q := IN1 XOR IN2;
Q := IN1 XOR IN2 XOR IN3;

FBD Language
(* the block may have up to 255 inputs *)

LD Language
(* First input is the rung. The rung is the output *)

IL Language

www.imopc.com 162

http://www.imopc.com/

Op1: LD IN1
 XOR IN2
 ST Q (* Q is equal to: IN1 XOR IN2 *)
Op2: LD IN1
 XORN IN2
 ST Q (* Q is equal to: IN1 XOR (NOT IN2) *)

See also
AND OR NOT

www.imopc.com 163

http://www.imopc.com/

S
Operator - Force a boolean output to TRUE.

Inputs
SET : BOOL Condition

Outputs
Q : BOOL Output to be forced

Truth table

SET Q
prev Q

0 0 0
0 1 1
1 0 1
1 1 1

Remarks
S and R operators are available as standard instructions in the IL language. In LD
languages they are represented by (S) and (R) coils In FBD language, you can use (S)
and (R) coils, but you should prefer RS and SR function blocks. Set and reset
operations are not available in ST language.

ST Language
Not available.

FBD Language
Prefer the use of RS or SR function blocks.

LD Language
(* use of "S" coil *)

IL Language
Op1: LD SET
 S Q (* Q is forced to TRUE if SET is TRUE *)
 (* Q is unchanged if SET is FALSE *)

See also
R RS SR

www.imopc.com 164

http://www.imopc.com/

R
Operator - Force a boolean output to FALSE.

Inputs
RESET : BOOL Condition

Outputs
Q : BOOL Output to be forced

Truth table

RESET Q
prev Q

0 0 0
0 1 1
1 0 0
1 1 0

Remarks
S and R operators are available as standard instructions in the IL language. In LD
languages they are represented by (S) and (R) coils. In FBD language, you can use (S)
and (R) coils, but you should prefer RS and SR function blocks. Set and reset
operations are not available in ST language.

ST Language
Not available.

FBD Language
Prefer the use of RS or SR function blocks.

LD Language
(* use of "R" coil *)

IL Language
Op1: LD RESET
 R Q (* Q is forced to FALSE if RESET is TRUE *)
 (* Q is unchanged if RESET is FALSE *)

See also
S RS SR

www.imopc.com 165

http://www.imopc.com/

Arithmetic Operations

Arithmetic Operations
Below are the standard operators that perform arithmetic operations:

Add
Subtract
Multiply
Divide

addition
subtraction
multiplication
division

www.imopc.com 166

http://www.imopc.com/

* MUL
Operator - Performs a multiplication of all inputs.

Inputs
IN1 : ANY (numeric) First input
IN2 : ANY (numeric) Second input

Outputs
Q : ANY_NUM Result: IN1 * IN2

Remarks
All inputs and the output must have the same type. In FBD language, the block may
have up to 255 inputs. In LD language, the EN signal enables the operation, and the
ENO keeps the same value as the EN. In IL language, the MUL instruction performs a
multiplication between the current result and the operand. The current result and the
operand must have the same type.

ST Language
Q := IN1 * IN2;

FBD Language
(* the block may have up to 255 inputs *)

LD Language
(* The multiplication is executed only if EN is TRUE *)
(* ENO is equal to EN *)

IL Language
Op1: LD IN1
 MUL IN2
 ST Q (* Q is equal to: IN1 * IN2 *)
Op2: LD IN1
 MUL IN2
 MUL IN3
 ST Q (* Q is equal to: IN1 * IN2 * IN3 *)

See also
+ - /

www.imopc.com 167

http://www.imopc.com/

+ ADD
Operator - Performs an addition of all inputs.

Inputs
IN1 : ANY (numeric) First input
IN2 : ANY (numeric) Second input

Outputs
Q : ANY Result: IN1 + IN2

Remarks
All inputs and the output must have the same type. In FBD language, the block may
have up to 255 inputs. In LD language, the EN signal enables the operation, and the
ENO keeps the same value as the EN. In IL language, the ADD instruction performs
an addition between the current result and the operand. The current result and the
operand must have the same type.

ST Language
Q := IN1 + IN2;

FBD Language
(* the block may have up to 255 inputs *)

LD Language
(* The addition is executed only if EN is TRUE *)
(* ENO is equal to EN *)

IL Language
Op1: LD IN1
 ADD IN2
 ST Q (* Q is equal to: IN1 + IN2 *)
Op2: LD IN1
 ADD IN2
 ADD IN3
 ST Q (* Q is equal to: IN1 + IN2 + IN3 *)

See also
- * /

www.imopc.com 168

http://www.imopc.com/

- SUB
Operator - Performs a subtraction of inputs.

Inputs
IN1 : ANY (numeric) / TIME First input
IN2 : ANY (numeric) / TIME Second input

Outputs
Q : ANY_NUM / TIME Result: IN1 - IN2

Remarks
All inputs and the output must have the same type. In LD language, the EN signal
enables the operation, and the ENO keeps the same value as the EN. In IL language,
the SUB instruction performs a subtraction between the current result and the
operand. The current result and the operand must have the same type.

ST Language
Q := IN1 - IN2;

FBD Language

LD Language
(* The subtraction is executed only if EN is TRUE *)
(* ENO is equal to EN *)

IL Language
Op1: LD IN1
 SUB IN2
 ST Q (* Q is equal to: IN1 - IN2 *)
Op2: LD IN1
 SUB IN2
 SUB IN3
 ST Q (* Q is equal to: IN1 - IN2 - IN3 *)

See also
+ * /

www.imopc.com 169

http://www.imopc.com/

/ DIV
Operator - Performs a division of inputs.

Inputs
IN1 : ANY (numeric) First input
IN2 : ANY (numeric) Second input

Outputs
Q : ANY_NUM Result: IN1 / IN2

Remarks
All inputs and the output must have the same type. In LD language, the input rung EN
signal enables the operation, and the ENO keeps the same value as the EN. In IL
language, the DIV instruction performs a division between the current result and the
operand. The current result and the operand must have the same type.

ST Language
Q := IN1 / IN2;

FBD Language

LD Language
(* The division is executed only if EN is TRUE *)
(* ENO is equal to EN *)

IL Language
Op1: LD IN1
 DIV IN2
 ST Q (* Q is equal to: IN1 / IN2 *)
Op2: LD IN1
 DIV IN2
 DIV IN3
 ST Q (* Q is equal to: IN1 / IN2 / IN3 *)

See also
+ - *

www.imopc.com 170

http://www.imopc.com/

Standard Operations

Standard Operations
Below are the standard functions for managing standard operations:

Copy 1 Gain
Negation
Boolean Negation

www.imopc.com 171

http://www.imopc.com/

Copy 1 Gain
Operator - variable assignment.

Inputs
IN : ANY Any variable or complex expression

Outputs
Q : ANY Forced variable

Remarks
The output variable and the input expression must have the same type. The forced
variable cannot have the "read only" attribute. In LD and FBD languages, the "1"
block is available to perform a "1 gain" data copy. In LD language, the EN enables
the assignment, and the ENO keeps the state of the EN. In IL language, the LD
instruction loads the first operand, and the ST instruction stores the current result into
a variabe. The current result and the operand of ST must have the same type. Both LD
and ST instructions can be modified by "N" in case of a boolean operand for
performing a boolean negation.

ST Language
Q := IN; (* copy IN into variable Q *)
Q := (IN1 + (IN2 / IN 3)) * IN4; (* assign the result of a complex expression *)
result := SIN (angle); (* assign a variable with the result of a function *)
time := MyTon.ET; (* assign a variable with an output parameter of a function block
*)

FBD Language

LD Language
(* The copy is executed only if EN is TRUE *)
(* ENO has the same value as EN *)

IL Language
LD IN (IN & Q assin as INT data type)
IN1
ST Q

See also
Parenthesis

www.imopc.com 172

http://www.imopc.com/

NEG -
Operator - Performs an integer negation of the input.

Inputs
IN : DINT Integer value

Outputs
Q : DINT Integer negation of the input

Truth table (examples)

IN Q
0 0
1 -1
-123 123

Remarks
In FBD and LD language, the block "NEG" can be used. In LD language, the
operation is executed only if the input rung (EN) is TRUE. The output rung (ENO)
keeps the same value as the input rung. This feature is not available in IL language. In
ST language, "-" can be followed by a complex boolean expression between
parenthesis.

ST Language
Q := -IN;
Q := - (IN1 + IN2);

FBD Language

LD Language
(* The negation is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

IL Language
LD-IN1 *IN1 & Q assign as INT data types)
NEG:
ST Q

www.imopc.com 173

http://www.imopc.com/

NOT
Operator - Performs a boolean negation of the input.

Inputs
IN : BOOL Boolean value

Outputs
Q : BOOL Boolean negation of the input

Truth table

IN Q
0 1
1 0

Remarks
In FBD language, the block "NOT" can be used. Alternatively, you can use a link
terminated by a "o" negation. In LD language, negated contacts and coils can be used.
In IL language, the "N" modifier can be used with instructions LD, AND, OR, XOR
and ST. It represents a negation of the operand. In ST language, NOT can be followed
by a complex boolean expression between parenthesis.

ST Language
Q := NOT IN;
Q := NOT (IN1 OR IN2);

FBD Language
(* explicit use of the "NOT" block *)

(* use of a negated link: Q is IN1 AND NOT IN2 *)

LD Language
(* Negated contact: Q is: IN1 AND NOT IN2 *)

(* Negated coil: Q is NOT (IN1 AND IN2) *)

IL Language
Op1: LDN IN1
 OR IN2

www.imopc.com 174

http://www.imopc.com/

 ST Q (* Q is equal to: (NOT IN1) OR IN2 *)
Op2: LD IN1
 AND IN2
 STN Q (* Q is equal to: NOT (IN1 AND IN2) *)

See also
AND OR XOR

www.imopc.com 175

http://www.imopc.com/

Comparison Operations

Comparison Operations
Below are the standard operators and blocks that perform comparisons:

Less Than
Greater Than
Less Than or
Equal
Greater Than or
Equal
Equal
Not Equal
Bounds Test

less than
greater than
less or equal
greater or equal
is equal
is not equal
is within or out of range

www.imopc.com 176

http://www.imopc.com/

< LT
Operator - Test if first input is less than second input.

Inputs
IN1 : ANY First input
IN2 : ANY Second input

Outputs
Q : BOOL TRUE if IN1 < IN2

Remarks
IN1 & IN2 must have the same data type. In LD language, the EN signal enables the
operation, and the ENO is the result of the comparison. In IL language, the LT
instruction performs the comparison between the current result and the operand. The
current result and the operand must have the same type.

ST Language
Q := IN1 < IN2;

FBD Language

LD Language
(* The comparison is executed only if EN is TRUE *)

IL Language
Op1: LD IN1
 LT IN2
 ST Q (* Q is true if IN1 < IN2 *)

See also
> >= <= = <>

www.imopc.com 177

http://www.imopc.com/

<= LE
Operator - Test if first input is less than or equal to second input.

Inputs
IN1 : ANY First input
IN2 : ANY Second input

Outputs
Q : BOOL TRUE if IN1 <= IN2

Remarks
Both inputs must have the same type. In LD language, the the EN signal enables the
operation, and the ENO is the result of the comparison. In IL language, the LE
instruction performs the comparison between the current result and the operand. The
current result and the operand must have the same type.

ST Language
Q := IN1 <= IN2;

FBD Language

LD Language
(* The comparison is executed only if EN is TRUE *)

IL Language
Op1: LD IN1
 LE IN2
 ST Q (* Q is true if IN1 <= IN2 *)

See also
> < >= = <>

www.imopc.com 178

http://www.imopc.com/

<> NE
Operator - Test if first input is not equal to second input.

Inputs
IN1 : ANY First input
IN2 : ANY Second input

Outputs
Q : BOOL TRUE if IN1 is not equal to IN2

Remarks
Both inputs must have the same type. In LD language, the input rung EN signal
enables the operation, and the ENO is the result of the comparison. In IL language,
the NE instruction performs the comparison between the current result and the
operand. The current result and the operand must have the same type.

Equality comparisons cannot be used with TIME variables. Because the timer actually
has the resolution of the target cycle and test may be unsafe as some values may never
be reached

ST Language
Q := IN1 <> IN2;

FBD Language

LD Language
(* The comparison is executed only if EN is TRUE *)

IL Language
Op1: LD IN1
 NE IN2
 ST Q (* Q is true if IN1 is not equal to IN2 *)

See also
> < >= <= =

www.imopc.com 179

http://www.imopc.com/

= EQ
Operator - Test if first input is equal to second input.

Inputs
IN1 : ANY First input
IN2 : ANY Second input

Outputs
Q : BOOL TRUE if IN1 = IN2

Remarks
Both inputs must have the same type. In LD language, the input rung EN signal
enables the operation, and the ENO is the result of the comparison. In IL language,
the EQ instruction performs the comparison between the current result and the
operand. The current result and the operand must have the same type.
Equality comparisons cannot be used with TIME variables. Because the timer actually
has the resolution of the target cycle and test may be unsafe as some values may never
be reached.

ST Language
Q := IN1 = IN2;

FBD Language

LD Language
(* The comparison is executed only if EN is TRUE *)

IL Language
Op1: LD IN1
 EQ IN2
 ST Q (* Q is true if IN1 = IN2 *)

See also
> < >= <= <>

www.imopc.com 180

http://www.imopc.com/

> GT
Operator - Test if first input is greater than second input.

Inputs
IN1 : ANY First input
IN2 : ANY Second input

Outputs
Q : BOOL TRUE if IN1 > IN2

Remarks
Both inputs must have the same type. In LD language, the input rung EN signal
enables the operation, and the ENO is the result of the comparison. In IL language,
the GT instruction performs the comparison between the current result and the
operand. The current result and the operand must have the same type.

ST Language
Q := IN1 > IN2;

FBD Language

LD Language
(* The comparison is executed only if EN is TRUE *)

IL Language
Op1: LD IN1
 GT IN2
 ST Q (* Q is true if IN1 > IN2 *)

See also
< >= <= = <>

www.imopc.com 181

http://www.imopc.com/

>= GE
- Test if first input is greater than or equal to second input.

Inputs
IN1 : ANY First input
IN2 : ANY Second input

Outputs
Q : BOOL TRUE if IN1 >= IN2

Remarks
Both inputs must have the same type. In LD language, the input rung EN signal
enables the operation, and the ENO is the result of the comparison. In IL language,
the GE instruction performs the comparison between the current result and the
operand. The current result and the operand must have the same type.

ST Language
Q := IN1 >= IN2;

FBD Language

LD Language
(* The comparison is executed only if EN is TRUE *)

IL Language
Op1: LD IN1
 GE IN2
 ST Q (* Q is true if IN1 >= IN2 *)

See also
> < <= = <>

www.imopc.com 182

http://www.imopc.com/

LIM
Operator – This block determines if the input (IN) value is numerically in the range
defined by the Low and High.

Inputs
LOW: This is the lower range for the Input IN. (TYPE : ANY)
IN: The Input which is checked to lie between the Low & High ranges specified at
the Inputs. (TYPE : ANY)
HIGH: This is the Higher range for the Input IN. (TYPE : ANY)

Outputs
Q : The Output is true when input IN is in between the LOW/HIGH range. (TYPE:
BOOL)

Remarks

If Low <= High:
This function passes power if the input is in between Low and High (inclusive) range.
For example, if Low = 10 and High = 100 when the INPUT is between 10 and 100
the function passes power. If the input is 9 or lower OR 101 or higher this function
would not pass power.

If Low > High:
This function passes power if the input is outside the range of Low and High
(exclusive).
For example, if Low = 100 and High = 10 when the INPUT is between 11 and 99 the
function does not pass power. If the input is 10 or lower OR 100 or higher this
function will pass power.

ST Language

Example:
LIM (LOW, IN, HIGH)
Q: = LIM. Q;

FBD Language

LD Language

IL Language
Example:
Op1: CAL LIM (LOW, IN, HIGH);

LD LIM. Q
ST Q

www.imopc.com 183

http://www.imopc.com/

Mathematical Operations

Mathematical Operations
Below are the standard functions that perform mathematical calculation:

Absolute Value
Arc-Cosine
Arc-Sine
Arc-Tangent
Cosine
Degrees to
Radians
Power of e
Exponent of X
Base 10
Logarithm
Logarithm
Radian To
Degrees
Sine
Modulo
Square Root
Tangent
Trigonometric
Operations

absolute value

logarithm

square root

www.imopc.com 184

http://www.imopc.com/

ABS
Function - Returns the absolute value of the input.

Inputs
IN : REAL Real value

Outputs
Q : REAL/LREAL Result: absolute value of IN

Remarks
In LD language, the operation is executed only if the EN is TRUE. The ENO keeps
the same value as the EN. In IL, the input must be loaded in the current result before
calling the function.

ST Language
Q := ABS (IN);

FBD Language

LD Language
(* The function is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

IL Language
Op1: LD IN
 ABS
 ST Q (* Q is: ABS (IN) *)

See also
LOG SQRT

www.imopc.com 185

http://www.imopc.com/

ACOS
Function - Calculate an arc-cosine.

Inputs
IN : REAL Real value

Outputs
Q : REAL Result: arc-cosine of IN

Remarks
In LD language, the operation is executed only if the EN is TRUE. The ENO keeps
the same value as the EN. In IL, the input must be loaded in the current result before
calling the function.

ST Language
Q := ACOS (IN);

FBD Language

LD Language
(* The function is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

IL Language
Op1: LD IN
 ACOS
 ST Q (* Q is: ACOS (IN) *)

See also
SIN COS TAN ASIN ATAN

www.imopc.com 186

http://www.imopc.com/

ASIN
Function - Calculate an arc-sine.

Inputs
IN : REAL/LREAL Real value

Outputs
Q : REAL/LREAL Result: arc-sine of IN

Remarks
In LD language, the operation is executed only if the EN is TRUE. The ENO keeps
the same value as the EN. In IL, the input must be loaded in the current result before
calling the function.

ST Language
Q := ASIN (IN);

FBD Language

LD Language
(* The function is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

IL Language
Op1: LD IN
ASIN
ST (* Q is: ASIN (IN) *)

See also
SIN COS TAN ACOS ATAN

www.imopc.com 187

http://www.imopc.com/

ATAN
Function - Calculate an arc-tangent.

Inputs
IN : REAL Real value

Outputs
Q : REAL Result: arc-tangent of IN

Remarks
In LD language, the operation is executed only if the EN signal is TRUE. The ENO
keeps the same value as the EN. In IL, the input must be loaded in the current result
before calling the function.

ST Language
Q := ATAN (IN);

FBD Language

LD Language
(* The function is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

IL Language
Op1: LD IN
ATAN
ST Q (* Q is: ATAN (IN) *)

See also
SIN COS TAN ASIN ACOS

www.imopc.com 188

http://www.imopc.com/

COS
Function - Calculate a cosine.

Inputs
IN : REAL/LREAL Real value

Outputs
Q : REAL/LREAL Result: cosine of IN

Remarks
In LD language, the operation is executed only if the input rung (EN) is TRUE. The
output rung (ENO) keeps the same value as the input rung. In IL, the input must be
loaded in the current result before calling the function.

ST Language
Q := COS (IN);

FBD Language

LD Language
(* The function is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

IL Language
Op1: LD IN
COS
ST (* Q is: COS (IN) *)

See also
SIN TAN ASIN ACOS ATAN

www.imopc.com 189

http://www.imopc.com/

DegToRad
Operator – Converts Degrees to Radians.

Inputs
IN: Input in Degrees. (TYPE : REAL)

Outputs
Q : Converted input to Radians. (TYPE : REAL)

ST Language

Q := DegToRad (IN);

FBD Language

LD Language

IL Language
Op1: LD IN

DegToRad
ST Q

See also
RadToDeg

www.imopc.com 190

http://www.imopc.com/

EXT
Operator – This function determines the value of e (the base of natural logarithms)
raised to the IN'th power and places the result in Q.

Inputs
IN: Number used for finding the natural log. (TYPE : REAL)

Outputs
Q : The result of e raised to the power of IN. (TYPE : REAL)
Q = EXT(IN)

ST Language
Q = EXT(IN);

FBD Language

LD Language

IL Language
Op1: LD IN
 EXT
 ST Q

See also
E
X
P
T

www.imopc.com 191

http://www.imopc.com/

EXPT
Operator – This function raises IN to the EXP'th power and places the result in Q

Inputs
IN: Number which needs to be raised to EXP’th Power (TYPE : REAL)
EXP: Number used for increasing the Input IN to this power (TYPE : REAL)

Outputs
Q : The result of IN raised to the power of EXP. (TYPE : REAL)
Q = IN^^EXP

ST Language
Q = EXPT(IN, EXP)

FBD Language

LD Language

IL Language
Op1: LD IN

EXPT EXP
ST Q

See also
E
X
T

www.imopc.com 192

http://www.imopc.com/

LOG10
Function – Calculates the logarithm (base 10) of the input.

Inputs
IN: Input to determine LOG to base 10. (TYPE : REAL)

Outputs
Q : Outputs LOG to base 10 for the Input at IN. (TYPE: REAL)

ST Language

Q := LOG10(IN);

FBD Language

LD Language
(* The function is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

IL Language
Op1: LD IN

LOG10
ST Q(* Q is: LOG10(IN) *)

See also
LOG

www.imopc.com 193

http://www.imopc.com/

LOG
Function - Calculates the logarithm (base e) of the input.

Inputs
IN : REAL Real value

Outputs
Q : REAL Result: logarithm (base e) of IN

Remarks
In LD language, the operation is executed only if the input rung (EN) is TRUE. The
output rung (ENO) keeps the same value as the input rung. In IL, the input must be
loaded in the current result before calling the function.

ST Language
Q := LOG (IN);

FBD Language

LD Language
(* The function is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

IL Language
Op1: LD IN
 LOG
 ST Q (* Q is: LOG (IN) *)

See also
ABS POW SQRT

www.imopc.com 194

http://www.imopc.com/

RadToDeg
Operator – Converts Radians to Degrees.

Inputs
IN: Input in Radians.(TYPE : REAL)

Outputs
Q : Converted input to Degrees. (TYPE : REAL)

ST Language

Q := RadToDeg(IN);

FBD Language

LD Language

IL Language
Op1: LD IN

RadToDeg
ST Q

See also
DegToRad

www.imopc.com 195

http://www.imopc.com/

SIN / SINL
Function - Calculate a sine.

Inputs
IN : REAL/LREAL Real value

Outputs
Q : REAL/LREAL Result: sine of IN

Remarks
In LD language, the operation is executed only if the input rung (EN) is TRUE. The output
rung (ENO) keeps the same value as the input rung. In IL, the input must be loaded in the current
result before calling the function.

ST Language
Q := SIN (IN);

FBD Language

LD Language
(* The function is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

IL Language
Op1: LD IN
 SIN
 ST Q (* Q is: SIN (IN) *)

See also
COS TAN ASIN ACOS ATAN ATAN2

www.imopc.com 196

http://www.imopc.com/

MOD
Function - Calculation of modulo.

Inputs
IN : DINT Input value
BASE : DINT Base of the modulo

Outputs
Q : DINT Modulo: rest of the integer division (IN / BASE)

Remarks
In LD language, the input rung EN signal enables the operation, and the ENO keeps
the state of the EN. In IL language, the first input must be loaded before the function
call. The second input is the operand of the function.

ST Language
Q := MOD (IN, BASE);

FBD Language

LD Language
(* The comparison is executed only if EN is TRUE *)
(* ENO has the same value as EN *)

IL Language
Op1: LD IN
 MOD BASE
 ST Q (* Q is the rest of integer division: IN / BASE *)

www.imopc.com 197

http://www.imopc.com/

SQRT
Function - Calculates the square root of the input.

Inputs
IN : REAL Real value

Outputs
Q : REAL Result: square root of IN

Remarks
In LD language, the operation is executed only if the input rung (EN) is TRUE. The
output rung (ENO) keeps the same value as the input rung. In IL, the input must be
loaded in the current result before calling the function.

ST Language
Q := SQRT (IN);

FBD Language

LD Language
(* The function is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

IL Language
Op1: LD IN
 SQRT
 ST Q (* Q is: SQRT (IN) *)

See also
ABS LOG

www.imopc.com 198

http://www.imopc.com/

TAN
Function - Calculate a tangent.

Inputs
IN : REAL Real value

Outputs
Q : REAL Result: tangent of IN

Remarks
In LD language, the operation is executed only if the input rung (EN) is TRUE. The
output rung (ENO) keeps the same value as the input rung. In IL, the input must be
loaded in the current result before calling the function.

ST Language
Q := TAN (IN);

FBD Language

LD Language
(* The function is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

IL Language:
Op1: LD IN
 TAN
 ST Q (* Q is: TAN (IN) *)

See also
SIN COS ASIN ACOS ATAN

www.imopc.com 199

http://www.imopc.com/

Advanced Operations

Advanced Operations
Below are the standard operators that perform Advanced operations:

Alarm Handling
Alarm with
Date/Time Stamp
Set Clock
Real Scaling
Integer Scaling
Indexed Stepper
Move
Stepper Move

www.imopc.com 200

http://www.imopc.com/

Alarm
Operator - Creates an alarm handler from a table of contiguous alarm bits in the i³.
Within the table each bit relates to an individual alarm and the status of each alarm is
monitored.

Inputs
CB[] : Control Block (TYPE : UINT[])
Each alarm require one 16-bit status register. The registers for multiple alarms are
defined in a contiguous block called the Control Block. One bit is written to this
register to indicate that the alarm is active. The register also contains sections that
indicates the acknowledge and pending status and contains a count for the alarm. By
placing the alarm status registers in a section of retentive memory (%R, %M...) the
alarm states will be retained through a power cycle.
The following table shows how the bits in the alarm status word (control block) are
allocated:
Bits: 16-12 11 10 9 8-1

Definition: Undefined* Acknowledge Pending Active Alarm
Count

NEXT: (TYPE : BOOL)
When this input transitions from low to high, the next (higher alarm number) pending
alarm is shown on the display. If the highest alarm is being displayed, the alarm
number is not incremented further.
PREV: (TYPE : BOOL)
When this input transitions from low to high, the previous (lower alarm number)
pending alarm is shown on the display. If the lowest alarm is being displayed, the
alarm number is not decremented further.
CLEAR: (TYPE : BOOL)
When this input transitions from low to high, the currently displayed alarm is cleared
if it has already been acknowledged. If it has not been acknowledged this input has no
affect. Once the alarm is cleared, the function block immediately searches for the next
active alarm screen to display by searching for the next (higher) alarm status register
with a Pending bit set. If an alarm is cleared that is still active, the pending bit will be
set and if no other alarm is active will continue to be displayed
ACK: (TYPE : BOOL)
When this input transitions from low to high, the currently displayed alarm is marked
as acknowledged. This will set the acknowledge bit in the status register and allow the
alarm to be cleared
#SCREEN1: (TYPE : DINT)
This defines the first in a block of screens that will be used to display alarm
information.
#COUNT: (TYPE : DINT)
Count is the total number of alarms defined. This number also sets how many
registers are used for status registers, how many text screens are reserved for alarm
display.

Remarks

1) The Control Block

www.imopc.com 201

http://www.imopc.com/

Alarm Count - This is a BYTE counter that counts how many times an alarm occurs.
The count only increments when the pending bit goes from low to high. To count
another alarm event the alarm must be acknowledged, cleared and reactivated. When
the count reaches a maximum of 255 it no longer changes until reset. This count can
be reset by writing directly to this portion of the register using one of the BYTE
instructions.
Active - This bit is set by the user's ladder program to indicate an alarm condition has
occurred. For example, if the alarm is to indicate an over-temperature condition, have
the ladder logic perform a compare, then set this bit if the compare indicates the
temperature is greater than a setpoint.
Pending - This bit is set by the function block when the Active bit is high and is reset
through the functions block's Clear operation. If the Active bit is high when Pending
is reset, a new alarm will be recognized and Pending will be set immediately
Acknowledge - This bit is set by the function block after a pending alarm has been
acknowledged.

2) Special Status Bits
Bit 16 of the first status word turns ON when any alarm is pending (but may be
acknowledged).
Bit 15 of the first status word turn ON when any alarm is unacknowledged.

ST Language
(* AB is a declared instance of Alarm function block *)
AB(CB[], NEXT, PREV, CLEAR, ACK, #SCREEN1, #COUNT);

FBD Language

LD Language

www.imopc.com 202

http://www.imopc.com/

IL Language
(* AB is a declared instance of Alarm function block *)
OP1 : CAL AB(CB[], NEXT, PREV, CLEAR, ACK, #SCREEN1, #COUNT)

See also
A
l
a
r
m
S
t
a
m
p

www.imopc.com 203

http://www.imopc.com/

AlarmStamp
Operator - Creates an alarm handler from a table of contiguous alarm bits in the i³.
Within the table each bit relates to an individual alarm and the status of each alarm is
monitored. In addition a time stamp table is maintained for each alarm indicating the
last time the alarm was activated, acknowledged and cleared.

Inputs
CB[] : Control Block (TYPE : UINT[])
Each alarm requires one 16-bit status register. The registers for multiple alarms are
defined in a contiguous block called the Control Block. One bit is written to this
register to indicate that the alarm is active. The register also contains sections that
indicates the acknowledge and pending status and contains a count for the alarm. By
placing the alarm status registers in a section of retentive memory (%R, %M...) the
alarm states will be retained through a power cycle.
The following table shows how the bits in the alarm status word (control block) are
allocated:
Bits: 16-12 11 10 9 8-1

Definition: Undefined* Acknowledge Pending Active Alarm
Count

NEXT: (TYPE : BOOL)
When this input transitions from low to high, the next(higher alarm number) pending
alarm is shown on the display. If the highest alarm is being displayed, the alarm
number is not incremented further.
PREV: (TYPE : BOOL)
When this input transitions from low to high, the previous (lower alarm number)
pending alarm is shown on the display. If the lowest alarm is being displayed, the
alarm number is not decremented further.
CLEAR: (TYPE : BOOL)
When this input transitions from low to high, the currently displayed alarm is cleared
if it has already been acknowledged. If it has not been acknowledged this input has no
affect. Once the alarm is cleared, the function block immediately searches for the next
active alarm screen to display by searching for the next (higher) alarm status register
with a Pending bit set. If an alarm is cleared that is still active, the pending bit will be
set and if no other alarm is active will continue to be displayed
ACK: (TYPE : BOOL)
When this input transitions from low to high, the currently displayed alarm is marked
as acknowledged. This will set the acknowledge bit in the status register and allow the
alarm to be cleared.
#SCREEN1 : (TYPE : DINT)
This defines the first in a block of screens that will be used to display alarm
information.
#COUNT : (TYPE : DINT)
Is the total number of alarms defined. This number also sets how many registers are
used for status registers, how many text screens are reserved for alarm display.
#MODE : (TYPE : DINT)
The mode in which the time stamping to be done.
STAMP[] : (TYPE : INT[])
The time & date values are stored in this array of registers.

www.imopc.com 204

http://www.imopc.com/

Remarks

1) The Control Block
Alarm Count - This is a BYTE counter that counts how many times an alarm occurs.
The count only increments when the pending bit goes from low to high. To count
another alarm event the alarm must be acknowledged, cleared and reactivated. When
the count reaches a maximum of 255 it no longer changes until reset. This count can
be reset by writing directly to this portion of the register using one of the BYTE
instructions.
Active - This bit is set by the user's ladder program to indicate an alarm condition has
occurred. For example, if the alarm is to indicate an over-temperature condition, have
the ladder logic performs a compare, then set this bit if the compare indicates the
temperature is greater than a set point.
Pending - This bit is set by the function block when the Active bit is high and is reset
through the functions block's Clear operation. If the Active bit is high when Pending
is reset, a new alarm will be recognized and Pending will be set immediately
Acknowledge - This bit is set by the function block after a pending alarm has been
acknowledged.
Special Status Bits
Bit 16 of the first status word turns ON when any alarm is pending (but may be
acknowledged).
Bit 15 of the first status word turn ON when any alarm is unacknowledged.

2) Time Stamp Registers
Time stamping can be set to one of three modes:
None - No time stamping is performed and no additional register space is required.
Time Only - The time is recorded when each alarm's pending bit becomes active.
Each alarm requires three (3) registers starting at the block defined by the time
stamping control block. The time is recorded in the same format as the real-time-clock
is stored in the system registers.
Time and Date - The time and date is recorded when each alarm's pending bit
becomes active. Each alarm requires six (6) registers starting at the block defined by
the time stamping control block. The time and date is recorded in the same format as
the real-time-clock is stored in the system registers.

ST Language
(* ASMP is a declared instance of Alarm Stamp function block *)
ASMP(CB[], NEXT, PREV, CLEAR, ACK, #SCREEN1, #COUNT, #MODE,
STAMP[]);

FBD Language

LD Language

IL Language
(* ASMP is a declared instance of Alarm Stamp function block *)
OP1 : CAL ASMP(CB[], NEXT, PREV, CLEAR, ACK, #SCREEN1, #COUNT,
#MODE, STAMP[])

See also

www.imopc.com 205

http://www.imopc.com/

Alarm

www.imopc.com 206

http://www.imopc.com/

ScaleInt
Operator – This function scales the input to the specified range.

Inputs
IN: The input which needs to be scaled to a specified range. (TYPE : INT)
MinIN: The minimum value of the input which has a defined scale. (TYPE : INT)
MaxIN: The maximum value of the input which has a defined scale. (TYPE : INT)
MinQ: The minimum value to which the input needs to be scaled. (TYPE : INT)
MaxQ: The maximum value to which the input needs to be scaled. (TYPE : INT)

Outputs
Q : The scaled output in the range of MinQ & MaxQ specified. (TYPE : INT)

Remarks
Cases often arise when numbers on one scale need to be translated to another scale.
The MinIN and MaxIN ranges indicated the expected or nominal values that the input
can be expected to attain. This is the range of values that corresponds to the expected
output range.
The MinQ and MaxQ Ranges indicate the range of value that the input signal is
converted to.

ST Language
Q := ScaleInt(IN, MinIN, MaxIN, MinQ, MaxQ);

FBD Language

LD Language

IL Language
Op1: LD IN

ScaleInt MinIN, MaxIN, MinQ, MaxQ
ST Q

See also
ScaleReal

www.imopc.com 207

http://www.imopc.com/

ScaleReal
Operator – This function scales the input to the range specified.

Inputs
IN: The input which needs to be scaled to a specified range. (TYPE : REAL)
MinIN: The minimum value of the input which has a defined scale. (TYPE : REAL)
MaxIN: The maximum value of the input which has a defined scale. (TYPE : REAL)
MinQ: The minimum value to which the input needs to be scaled. (TYPE : REAL)
MaxQ: The maximum value to which the input needs to be scaled. (TYPE : REAL)

Outputs
Q : The scaled output in the range of MinQ & MaxQ specified. (TYPE : REAL)

Remarks
Cases often arise when numbers on one scale need to be translated to another scale.
The MinIN and MaxIN Ranges indicate the expected or nominal values that the input
can be expected to attain.
The MinQ and MaxQ Ranges indicate the range of value that the input signal is
converted to.

ST Language

Q := ScaleReal(IN, MinIN, MaxIN, MinQ, MaxQ);

FBD Language

LD Language

IL Language
Op1: LD IN

ScaleReal MinIN, MaxIN, MinQ, MaxQ
ST Q

See also
ScaleInt

www.imopc.com 208

http://www.imopc.com/

SetClk
Operator – Sets the clock, with the specified values.

Inputs
IN[] : Array of 6 elements, holds value in the form of SS MM HH, DD MM YYYY
format. (TYPE : INT[])

Outputs
Q : This is set to TRUE if the operation of setting the clock is successful. (TYPE:
BOOL)

ST Language

Q := SetClk(IN[]);

FBD Language

LD Language

IL Language
Not Available.

www.imopc.com 209

http://www.imopc.com/

STP100 Smart Stack Module

Module Configuration
In operation, the Stepper Element writes all values as a group to the Stepper
Controller SmartStack Module. (Technically, the actual write operation does not take
place until the next I/O cycle.) This is a great convenience, as otherwise require six or
ten individual elements. The Stepper Move instruction requires only one element.

The registers assigned to the Stepper Controller SmartStack Module are assigned by
default when the controller is configured. The exact position of the module in the %I,
% Q, %AI, and % AQ spaces is determined by the number of SmartStack modules
attached to this controller, and the physical position of the HE800STP100 module
within the stack.

This is a typical setup based on the HE800STP100 being the first (or only)
SmartStack module, and indexing is not selected:

Note: The STARTING LOCATION indicated for this module, in particular those
for % AQ. This information is used in the configuration screen. In this example, the
Stepper Controller lives at address %AQ01 and requires seven (7) consecutive
registers. This information belongs in the Stepper Starting % AQ box of the element
configuration screen.

Note: If the module and the element are configured to accept Indexed Moves, the
element requires fourteen (14) consecutive % AQ registers as below.

www.imopc.com 210

http://www.imopc.com/

First ensure that the SmartStack module is free to operate by checking the Status Bits,
%I1 to %I16. If any Error Bit is set, the source of the error must be cleared, and the
CLEAR ERRORS command issued. Condition of the Status Bits depends on the
previous command. Do not issue a new command (except the IMMEDIATE STOP
or DECELERATE AND STOP command) until the previous command has
completed.

When this element receives power, the values from the configured constants or
registers are loaded into the HE800STP100, preparing it for the next command.
(Technically, the actual write operation does not take place until the next I/O cycle.)

Note: DO NOT execute the Stepper Move element until the previous command is
complete.
Commands are issued by setting the appropriate command bit in the Stepper
Modules % Q address space after the Stepper Move element has completed.

COMMAND BITS
The sixteen- (16) Digital Output points (% Q) are used as Command Bits:

Point

Description

%Q1

Reserved

%Q2

Reserved

%Q3

Reserved

%Q4

Find Home Up

%Q5

Find Home Down

www.imopc.com 211

http://www.imopc.com/

%Q6

Jog Up

%Q7

Jog Down

%Q8

Move Relative

%Q9

Move Absolute

%Q10

Resume Move

%Q11

Move Indexed

%Q12

Reserved

%Q13

Set Current Position

%Q14

Clear Errors

%Q15

Decelerate and Stop

%Q16

Immediate Stop

Only one command bit is active at one time. If more than one bit is active at one time,
the bit with the highest number takes precedence. Note that this gives the
IMMEDIATE STOP command the highest precedence.

Immediately after power up, the Power up Error Status Bit is TRUE. The CLEAR
ERRORS command must be the first command issued. No other commands are
accepted if any error bit is TRUE.

All command bits are positive (OFF to ON) edge sensitive. The JOG UP and JOG
DOWN commands are also negative edge sensitive (ON to OFF) these commands
require both begin and end signals.

Note: The CLEAR ERRORS command must be issued before any other command is
issued. This is an important safety feature.

Not all commands are available at all times. For example, if a MOVE command is in
progress, only the DECELERATE AND STOP or IMMEDIATE STOP commands
are accepted.

STATUS BITS
The sixteen (16) Digital Input (%I) points are used as Status Bits:

Point

Description

%I1 Emergency Stop Error

www.imopc.com 212

http://www.imopc.com/

%I2

Lower End Limit Stop Error

%I3

Upper End Limit Stop Error

%I4

Illegal Move Error

%I5

Motor Stalled Error

%I6

Future Use

%I7

Future Use

%I8

Power Up/Watch Dog Error

%I9

Position Valid

%I10

Current Position Valid

%I11

Future Use

%I12

Future Use

%I13

At Home

%I14

Accelerating

%I15

Decelerating

%I16

Moving

Bits 1 through 8 are Error Bits. The condition causing the error is present if the Error
Bit is TRUE (1). The module does not function so long as any Error Bit is TRUE (1).
These bits are cleared by issuing the CLEAR ERROR command.

Bit 8, Power Up/ WatchDog Error, is TRUE immediately after power up or watchdog
timeout and prevents operation of the module until the CLEAR ERROR command is
issued.

The CLEAR ERROR command must therefore be the first command issued. No other
command is accepted while any error bit is TRUE.

Bits 9 through 16 are Status Bits. The status (TRUE or FALSE) of these bits indicates
the status of the condition referenced by these bits. These are NOT errors, and the
module continues to function normally in accordance with these bits. These bits are
not affected by the CLEAR ERRORS command.

www.imopc.com 213

http://www.imopc.com/

POSITION FEEDBACK REGISTERS

The four- (4) Analog Input (%AI) points are used as two (2) DINT (32-bit) registers.
The first two points are combined as a single 32-bit register, and the second two
points are combined as a 32-bit register.
Note: Under i³ Configurator, references to these register pairs would be specified as
DINT.

Point

Description

Range

%AI1

Motor Position Low Word

-8,388,608 - +8,388,607

%AI2

Motor Position High Word

%AI3

Encoder Position Low Word

-8,388,608 - +8,388,607

%AI4

Encoder Position High Word

Immediately after reset, the value in these registers is 0 (zero) and is considered
invalid as indicated by the CURRENT POSITION VALID Status Bit remaining
FALSE.

The Motor Position value remains invalid until either FIND HOME command is
issued or the SET CURRENT POSITION command is issued.

If the Motor Position is invalid, the MOVE ABSOLUTE command is not accepted.

COMMAND DATA OUTPUTS
These registers contain the data by which the commands operate.

Point

Data Size

Description

Range

%AQ1

32-bit

Destination Low Word

-8,388,608 to +8,388,607

%AQ2

Destination High Word

%AQ3

16-bit

Velocity Divisor

20 to 65,535

%AQ4

16-bit

Base Velocity
 1. to 8,190

%AQ5

16-bit

Running Velocity
 2. to 8,191

%AQ6

16-bit

Acceleration Time (mS)
 1. to 27,300

%AQ7

16-bit

Deceleration time (mS)

0 to 27,300

www.imopc.com 214

http://www.imopc.com/

The first two points are combined to form a single 32-bit register. This contains the
location where the stepping stops. Depending on the instruction issued, this position is
an absolute reference from the Home position or a relative position from the current
position.

The Velocity Divisor determines the resolution for the Base Velocity and Running
Velocity. Refer to the STP100 User Manual for a more complete discussion of this
register.

The Base Velocity determines the first velocity used when a command starts, and the
last velocity used when a command stops.

The Running Velocity is the top speed at which the command eventually operates.

In normal operation, a command starts operating at the Base Velocity, accelerates to
the
Running Velocity, decelerates to the Base Velocity, then stops. The Accelerating,
Decelerating, and Moving Status Bits reflects the current operational state.

The Acceleration Time is the amount of time the stepper allocates for accelerating
between Base Velocity and Running Velocity.

Deceleration Time is the amount of time the stepper allocates for decelerating from
Running Velocity to Base Velocity. If 0 (zero) is selected, the stepper automatically
uses the Acceleration Time setting.

INDEXED MOVES
The STP100 performs indexed moves. To do so, the SmartStack module must be
configured to accept an external Index Input, and the Stepper Move Element must
also be configured to match.

Note: All Indexed Moves are relative.

Configuring the Stepper Move Element adds seven (7) additional registers, six of
which are combined with each other to form three (3) 32-bit registers and one (1) 16-
bit register.

Point

Data Size

Description

Range

%AQ8

32-bit

Indexed Destination Low Word

0 to 16,777,215

%AQ9

Indexed Destination High Word

%AQ10

16-bit

Indexed Deceleration Time

0 to 27,300

%AQ11

32-bit

Index Window Begin Low Word

0 to 16,777,215

%AQ12 Index Window Begin High Word

www.imopc.com 215

http://www.imopc.com/

%AQ13

32-bit

Index Window End Low Word

0 to 16,777,215

%AQ14

Index Window End High Word

The Index Move command looks at an external input called INDEX-. This normally
expects to see a switch closure or some other electromechanical (optical, magnetic,
etc.) device. The input is active LOW. If the Stepper Controller sees the INDEX-
input low during the "window", the Stepper Controller moves the device to an
alternate position.
The window is defined by the Index Window Begin Position and the Index Window
End Position. The INDEX- input is honored only while the Stepper Controller is
within this range.

Note: The window period is further limited to that time when the stepper has reached
Running Velocity. If the window is defined such that the window attempts to open
during acceleration, the window does not open until Running Velocity is reached.
Also, the window closes automatically if the move starts to decelerate.

If the stepper never reaches Running Velocity the Index Window never opens.

If the INDEX- input occurs during the window, the Stepper Controller redefines the
destination position of the move to be Indexed Destination Position, (%AQ8 / %AQ9)
relative to the Current Motor Position (%AI1 / %AI2) at the time INDEX- became
active. The deceleration of the move is determined by the Indexed Deceleration Time.

ISSUING COMMANDS
The first step of issuing commands is to see that no errors exist. Immediately after
Power Up or Reset, the Power Up Error Bit is set, so the first command issued must
be the CLEAR ERRORS command.

A simple flow chart indicates how the CLEAR ERRORS command is affected:

After the Power On Error is cleared, the Current Position is not valid. This is noted by
Status Bit 10 being FALSE (0). The program needs to issue a FIND HOME UP,

www.imopc.com 216

http://www.imopc.com/

FIND HOME DOWN, or SET CURRENT POSITION command in order to validate
the position.

Current Position can become invalid (0) if the motor stops suddenly. This can be
caused by an Emergency Stop, Lower Limit Error, Upper Limit Error, Motor Stalled
Error or by issuing an IMMEDIATE STOP command. In any case, any source of
error must be corrected, and the motor homed or the current position updated as
outlined.
Other commands are issued in a similar manner:

1. If there are any errors present, correct the source of the errors then issue the
Clear Errors command.
2. Setup the values for the Stepper Move element, and then apply power to the
Stepper Move element.
3. Set the appropriate Command Bit to 1
4. Check the appropriate status bits for the command.
5. Do not issue another command until this command either completes successfully
or errors out.

www.imopc.com 217

http://www.imopc.com/

StepperMove
Operator -The Stepper Move element provides the necessary interface between i³
Configurator and the IMO STP100 Single Axis Stepper Controller SmartStack
module with no index.

Inputs
STEPPER STARTING % AQ (@Stepper): (TYPE: INT)
This contains the address of the first % AQ register assigned to the Stepper
SmartStack module. This information can be taken from the Stepper Module
SmartStack Configuration.

DESTINATION POSITION (DP): (TYPE: DINT)
This is a 32-bit register, contains the position where the move is to end. Value range is
-8,388,608 to +8,388,607

VELOCITY RESOLUTION (VR): (TYPE: INT)
This is a 16-bit register. Values range from 20 to 65535.

BASE VELOCITY (BV): (TYPE: INT)
This is a 16-bit register. Values range from 1 to 8190.

RUNNING VELOCITY (RV): (TYPE: INT)
This is a 16-bit register. Values range from 2 to 8191.

ACCELERATION TIME (AC): (TYPE: INT)
This is a 16-bit register. Times are listed in milliseconds (mS). Values range from 1
to 27300.

DECELERATION TIME (DC): (TYPE: INT)
This is a 16-bit register. Times are listed in milliseconds (mS). Values range from 0
to 27300.

Remarks
Configuration
NOTE: Verify the SmartStack module configuration before completing the Element
Configuration. The various entries must be completed by the programmer. Values can
be entered as numeric constants or registers reference by Name.

The STP100 module requires either seven (7) or fourteen (14) consecutive Analog
Output (% AQ) registers. To program the STP100 module, appropriate data must be
moved into the assigned % AQ registers, typically using seven or 14 Move Word
elements.

The purpose of the Stepper Move element is to transfer this data to the STP100
module with one instruction. Additionally, the Stepper Move element provides a built
in Stepper Motion Calculator that can calculate a Movement Profile graph based on
user-selected values.

www.imopc.com 218

http://www.imopc.com/

ST Language
(* STEPM is a declared instance of StepperMove function block *)
STEPM(@Stepper, DP, VD, BV, RV, AC, DC);

FBD Language

Ladder Language

IL Language
(* STEPM is a declared instance of StepperMove function block *)
Op1: CAL STEPM(@Stepper, DP, VD, BV, RV, AC, DC)

See also
StepperMoveInd STP100

www.imopc.com 219

http://www.imopc.com/

StepperMoveInd
Operator - Stepper Move element provides the necessary interface between i³
Configurator and IMO's STP100 Single Axis Stepper Controller SmartStack module
with Index defined.

Inputs
STEPPER STARTING % AQ (@Stepper): (TYPE: INT)
This contains the address of the first % AQ register assigned to the Stepper
SmartStack module. This information can be taken from the Stepper Module
SmartStack Configuration.

DESTINATION POSITION (DP): (TYPE: DINT)
This is a 32-bit register, contains the position where the move is to end. Value range is
-8,388,608 to +8,388,607

VELOCITY RESOLUTION (VR): (TYPE: INT)
This is a 16-bit register. Values range from 20 to 65535.

BASE VELOCITY (BV): (TYPE: INT)
This is a 16-bit register. Values range from 1 to 8190.

RUNNING VELOCITY (RV): (TYPE: INT)
This is a 16-bit register. Values range from 2 to 8191.

ACCELERATION TIME (AC): (TYPE: INT)
This is a 16-bit register. Times are listed in milliseconds (mS). Values range from 1
to 27300.

DECELERATION TIME (DC): (TYPE: INT)
This is a 16-bit register. Times are listed in milliseconds (mS). Values range from 0
to 27300.

The following registers are used only for Index Move operations:
INDEX DESTINATION POSITION (IDP): (TYPE: DINT)
This is a 32-bit register. Values range from 0 to 16,777,215.

INDEX DECELERATION (IDC): (TYPE: INT)
This is a 16-bit register. Values range from 1 to 27,300.

INDEX WINDOW OPEN (IWO): (TYPE: DINT)
This is a 32-bit register. Values range from 0 to 16,777,215.

INDEX WINDOW CLOSED (IWC): (TYPE: DINT)
This is a 32-bit register. Values range from 0 to 16,777,215.

Remarks
Configuration

www.imopc.com 220

http://www.imopc.com/

NOTE: Verify the SmartStack module configuration before completing the Element
Configuration. The various entries must be completed by the programmer. Values can
be entered as numeric constants or registers reference by Name.

The STP100 module requires either seven (7) or fourteen (14) consecutive Analog
Output (% AQ) registers. To program the STP100 module, appropriate data must be
moved into the assigned % AQ registers, typically using seven or 14 Move Word
elements.

The purpose of the Stepper Move element is to transfer this data to the STP100
module with one instruction. Additionally, the Stepper Move element provides a built
in Stepper Motion Calculator that can calculate a Movement Profile graph based on
user-selected values.

ST Language
(* STEPMI is a declared instance of StepperMoveInd function block *)
STEPMI (@Stepper, DP, VD, BV, RV, AC, DC, IDP, IDC, IWO, IWC);

FBD Language

Ladder Language

www.imopc.com 221

http://www.imopc.com/

IL Language
(* STEPMI is a declared instance of StepperMoveInd function block *)
Op1 : CAL STEPMI (@Stepper, DP, VD, BV, RV, AC, DC, IDP, IDC, IWO, IWC)

See also
StepperMove STP100

www.imopc.com 222

http://www.imopc.com/

Key Press
Operator - PressKey block provides a facility to add replicate key to existing Function
keys, soft keys and other front panel keys of the i³ with exception to system key of
Touch-i³s.

Note:- Only Digital input bits can be set as Replicate Keys.

Inputs
#Key: Key Number (TYPE : DINT)
@ReplKey: Key to replicate (TYPE: BOOL)

Outputs
Q : Output (Type: BOOL)

Remarks
The operation of the Replicate Keys (PressKey) is exactly same as the actual keys
operations but in i³ run mode only. The Replicate Key works in parallel to actual
Keys.

ST Language

Q:= KEYPRESS(16#1, Input1(*BOOL*));
Q1:=F1_Key;
Q11:= Input1;

FBD Language

LD Language

www.imopc.com 223

http://www.imopc.com/

IL Language

BEGIN_IL

LD 1
KEYPRESS Input1
S Q1

END_IL

www.imopc.com 224

http://www.imopc.com/

LoadRcpByIndex
Operator - The load function allows an operator to select a product from the specified
recipe. Once selected the settings for the appropriate recipe will be loaded in to the
registers specified for the recipe.

Inputs
EN – (Type: BOOL)
The "EN" input is a condition. If EN is TRUE State then block is executed.
#Rcp - (Type: DINT)
Recipe number. First Recipe = 0, Second Recipe = 1 and so on.
Index - (Type: DINT)
Index specifies the Product. Here First Product = 1, Second Product = 2 and so on.
@Status - (Type: DINT)
A 16-bit register used to hold the results of the element.

Outputs
Q : Output (Type: BOOL)
ST Language
Q := LOADRCPBYINDEX(EN1(*BOOL*), 16#0 (*DINT*), 1(*DINT*),
Status(*DINT*));

FBD Language

LD Language

IL Language
BEGIN_IL

LD LRBI_IN1
LOADRCPBYINDEX 0, 1, Status1

www.imopc.com 225

http://www.imopc.com/

ST LRBI_Out1

END_IL

www.imopc.com 226

http://www.imopc.com/

LoadRcpByStr
Operator - The load function allows an operator to select a product from the specified recipe.
Once selected the settings for the appropriate recipe will be loaded in to the registers
specified for the recipe.

Inputs
EN – (Type: BOOL)
The "EN" input is a condition. If EN is TRUE State then block is executed.
#Rcp - (Type: DINT)
Recipe number. First Recipe = 0, Second Recipe = 1 etc.
#Name - (Type: String)
Name of the Product
@Status - (Type: DINT)
A 16-bit register used to hold the results of the element.
Outputs
Q : Output (Type: BOOL)

ST Language
Q1:= LOADRCPBYSTR(EN2(*BOOL*), 16#1(*DINT*), 'Product 5'(*STRING*),
Status3(*DINT*));

FBD Language

LD Language

IL Language
BEGIN_IL

LD LRBS_IN2
LOADRCPBYSTR 1, 'Product 5', Status2
ST LRBS_Q1

www.imopc.com 227

http://www.imopc.com/

END_IL

www.imopc.com 228

http://www.imopc.com/

LoadRcpByStr2
Operator - The load function allows an operator to select a product from the specified recipe.
Once selected the settings for the appropriate recipe will be loaded in to the registers
specified for the recipe.

Inputs
EN – (Type: BOOL)
The "EN" input is a condition. If EN is TRUE State then block is executed.
#Rcp - (Type: DINT)
Recipe number. First Recipe = 0, Second Recipe = 1 etc.
Name[] - (Type: USINT[])
Name of the Product assigned through array of registers.
@Status - (Type: DINT)
A 16-bit register used to hold the results of the element.

Outputs
Q : Output (Type: BOOL)

ST Language
Q2 := LOADRCPBYSTR2(EN3(*BOOL*), 16#2(*DINT*), Name(*USINT*),
Status5(*DINT*));

FBD Language

LD Language

IL Language
BEGIN_IL

www.imopc.com 229

http://www.imopc.com/

LD LRBS2_IN1
LOADRCPBYSTR2 2, Name1, Status3
ST LRBS2_Out3

END_IL

www.imopc.com 230

http://www.imopc.com/

SaveRcpByIndex
Operator - The Save function allows an operator to save the current working settings for a
recipe to a product setting. For example if the settings for a previously saved product have
been altered for improved machine operation, the operator can save the adjusted settings
back to the recipe database.

Inputs
EN – (Type: BOOL)
The "EN" input is a condition. If EN is TRUE State then block is executed.
#Rcp - (Type: DINT)
Recipe number. First Recipe = 0, Second Recipe = 1 and so on.
Index - (Type: DINT)
Index specifies the Product. Here First Product = 1, Second Product = 2 and so on.
@Status - (Type: DINT)
A 16-bit register used to hold the results of the element.

Outputs
Q : Output (Type: BOOL)

ST Language
Q:=SAVERCPBYINDEX(EN1(*BOOL*), 0(*DINT*), 2(*DINT*), Status2(*DINT*));

FBD Language

LD Language

IL Language
BEGIN_IL

LD SRBI_IN1_S

www.imopc.com 231

http://www.imopc.com/

SAVERCPBYINDEX 0, 2, Status2
ST SRBI_Out1_S

END_IL

www.imopc.com 232

http://www.imopc.com/

SaveRcpByStr
Operator - The Save function allows an operator to save the current working settings for a
recipe to a product setting. For example if the settings for a previously saved product have
been altered for improved machine operation, the operator can save the adjusted settings
back to the recipe database.

Inputs
EN – (Type: BOOL)
The "EN" input is a condition. If EN is TRUE State then block is executed.
#Rcp - (Type: DINT)
Recipe number. First Recipe = 0, Second Recipe = 1 etc.
#Name - (Type: String)
Name of the Product
@Status - (Type: DINT)
A 16-bit register used to hold the results of the element.

Outputs
Q : Output (Type: BOOL)

ST Language
Q1:=SAVERCPBYSTR(EN2(*BOOL*), 1(*DINT*), 'Product 3'(*STRING*),
Status2_S(*DINT*));

FBD Language

LD Language

IL Language
BEGIN_IL

www.imopc.com 233

http://www.imopc.com/

LD SRBS_IN2_S
SAVERCPBYSTR 1, 'Product 3', Status2_S
ST SRBS_Out_S

END_IL

www.imopc.com 234

http://www.imopc.com/

SaveRcpByStr2
Operator - The Save function allows an operator to save the current working settings for a
recipe to a product setting. For example if the settings for a previously saved product have
been altered for improved machine operation, the operator can save the adjusted settings
back to the recipe database.

Inputs
EN – (Type: BOOL)
The "EN" input is a condition. If EN is TRUE State then block is executed.
#Rcp - (Type: DINT)
Recipe number. First Recipe = 0, Second Recipe = 1 etc.
Name[] - (Type: USINT[])
Name of the Product assigned through array of registers.
@Status - (Type: DINT)
A 16-bit register used to hold the results of the element.

Outputs
Q : Output (Type: BOOL)

ST Language
Q2:=SAVERCPBYSTR2(EN3(*BOOL*), 2(*DINT*), Name_S(*USINT*), Status6(*DINT*));

FBD Language

LD Language

IL Language
BEGIN_IL

LD SRBS2_IN3_S
SAVERCPBYSTR2 0, Name1_S, Status3_S
ST SRBS2_Out3_S

www.imopc.com 235

http://www.imopc.com/

END_IL

www.imopc.com 236

http://www.imopc.com/

Register Operations

Register Operations
Below are the standard functions for managing registers:

Shift Left
Shift Right
Rotate Left
Rotate Right
BitSet
BitClear
BitTest

shift left
shift right
rotation left
rotation right
Bet Set
Bet Clear
Bit Test

The following functions enable bit to bit operations on an registers:

AND
OR
XOR
NOT

boolean AND
boolean OR
exclusive OR
boolean negation

www.imopc.com 237

http://www.imopc.com/

AND_MASK
Function - Performs a bit to bit AND between two register values

Inputs
IN : ANY First input
MSK : ANY Second input (AND mask)

Outputs
Q : ANY AND mask between IN and MSK inputs

Remarks
In LD language, the EN signal enables the operation, and the ENO keeps the same
value as the EN. In IL language, the first parameter (IN) must be loaded in the current
result before calling the function. The other input is the operands of the function.

ST Language
Q := AND_MASK (IN, MSK);

FBD Language

LD Language
(* The function is executed only if EN is TRUE *)
(* ENO is equal to EN *)

IL Language
Op1: LD IN
AND_MASK MSK
ST Q

See also
OR_MASK XOR_MASK NOT_MASK

www.imopc.com 238

http://www.imopc.com/

NOT_MASK
Function - Performs a bit to bit negation of an register value

Inputs
IN : ANY register input

Outputs
Q : ANY Bit to bit negation of the input

Remarks
In LD language, the input rung (EN) enables the operation, and the output rung keeps
the same value as the input rung. In IL language, the parameter (IN) must be loaded in
the current result before calling the function.

ST Language
Q := NOT_MASK (IN);

FBD Language

LD Language
(* The function is executed only if EN is TRUE *)
(* ENO is equal to EN *)

IL Language
Op1: LD IN
 NOT_MASK
 ST Q

See also
AND_MASK OR_MASK XOR_MASK

www.imopc.com 239

http://www.imopc.com/

OR_MASK
Function - Performs a bit to bit OR between two register values

Inputs
IN : ANY First input
MSK : ANY Second input (OR mask)

Outputs
Q : ANY OR mask between IN and MSK inputs

Remarks
In LD language, the input rung (EN) enables the operation, and the output rung keeps
the same value as the input rung. In IL language, the first parameter (IN) must be
loaded in the current result before calling the function. The other input is the operands
of the function.

ST Language
Q := OR_MASK (IN, MSK);

FBD Language

LD Language
(* The function is executed only if EN is TRUE *)
(* ENO is equal to EN *)

IL Language
Op1: LD IN
 OR_MASK MSK
 ST Q

See also
AND_MASK XOR_MASK NOT_MASK

www.imopc.com 240

http://www.imopc.com/

ROL
Function - Rotate bits of a register to the left.

Inputs
IN : ANY register
N : ANY Number of rotations (each rotation is 1 bit)

Outputs
Q : ANY Rotated register

Diagram

Remarks
In LD language, the EN signal enables the operation, and the ENO keeps the state of the
EN. In IL language, the first input must be loaded before the function call. The second
input is the operand of the function.

ST Language
Q := ROL (IN, NBR);

FBD Language

LD Language
(* The rotation is executed only if EN is TRUE *)
(* ENO has the same value as EN *)

IL Language
Op1: LD IN
 ROL NBR
 ST Q

www.imopc.com 241

http://www.imopc.com/

See also
SHL SHR ROR BitSet BitClear BitTest

www.imopc.com 242

http://www.imopc.com/

ROR
Function - Rotate bits of a register to the right.

Inputs
IN : ANYregister
N : ANY Number of rotations (each rotation is 1 bit)

Outputs
Q : ANY Rotated register

Diagram

Remarks
In LD language, the EN signal enables the operation, and the ENO keeps the state of the
EN. In IL language, the first input must be loaded before the function call. The second
input is the operand of the function.

ST Language
Q := ROR (IN, NBR);

FBD Language

LD Language
(* The rotation is executed only if EN is TRUE *)
(* ENO has the same value as EN *)

IL Language
Op1: LD IN
 ROR NBR
 ST Q

See also

www.imopc.com 243

http://www.imopc.com/

SHL SHR ROL BitSet BitClear BitTest

www.imopc.com 244

http://www.imopc.com/

SHL
Function - Shift bits of a register to the left.

Inputs
IN : ANY register
N : ANY Number of shifts (each shift is 1 bit)

Outputs
Q : ANY Shifted register

Diagram

Remarks
In LD language, the EN signal enables the operation, and the ENO keeps the state of the
EN. In IL language, the first input must be loaded before the function call. The second
input is the operand of the function.

ST Language
Q := SHL (IN, NBS);

FBD Language

LD Language
(* The shift is executed only if EN is TRUE *)
(* ENO has the same value as EN *)

IL Language
Op1: LD IN
 SHL NBS
 ST Q

See also

www.imopc.com 245

http://www.imopc.com/

SHR ROL ROR BitSet BitClear BitTest

www.imopc.com 246

http://www.imopc.com/

SHR
Function - Shift bits of a register to the right.

Inputs
IN : ANY register
N : ANY Number of shifts (each shift is 1 bit)

Outputs
Q : ANY Shifted register

Diagram

Remarks
In LD language, the EN signal enables the operation, and the ENO keeps the state of the
EN. In IL language, the first input must be loaded before the function call. The second
input is the operand of the function.

ST Language
Q := SHR (IN, NBS);

FBD Language

LD Language
(* The shift is executed only if EN is TRUE *)
(* ENO has the same value as EN *)

IL Language
Op1: LD IN
 SHR NBS
 ST Q

See also

www.imopc.com 247

http://www.imopc.com/

SHL ROL ROR BitSet BitClear BitTest

www.imopc.com 248

http://www.imopc.com/

XOR_MASK
Function - Performs a bit to bit exclusive OR between two register values

Inputs
IN : ANY First input
MSK : ANY Second input (XOR mask)

Outputs
Q : ANY Exclusive OR mask between IN and MSK inputs

Remarks
In LD language, the input rung (EN) enables the operation, and the output rung keeps
the same value as the input rung. In IL language, the first parameter (IN) must be
loaded in the current result before calling the function. The other input is the operands
of the function.

ST Language
Q := XOR_MASK (IN, MSK);

FBD Language

LD Language
(* The function is executed only if EN is TRUE *)
(* ENO is equal to EN *)

IL Language
Op1: LD IN
 XOR_MASK MSK
 ST Q

See also
AND_MASK OR_MASK NOT_MASK

www.imopc.com 249

http://www.imopc.com/

BitSet
Note: Supported by Firmware 12.70 or above.

Inputs
IN: Any data type, typically an array.
LEN: The size of the block in bytes.
BIT: The number of the bit in the block to be set.

Outputs
Q : Bit valid. TRUE if the bit number is <= LEN x 8
This element sets a bit in a bit string (IN) to 1. Bit string length (LEN) can be between
1 to 512 bytes.

ST Language
OK1 := BITSET(In1, Len1, Bit1);

FBD Language

LD Language

IL Language
Not Available

See also
SHL SHR ROL ROR BitClear BitTest

www.imopc.com 250

http://www.imopc.com/

BitTest
Note: Supported by Firmware 12.70 or above.

Inputs
IN: Any data type, typically an array.
LEN: The size of the block in bytes.
BIT: The number of the bit in the block to be tested.

Outputs
Q : Bit valid. TRUE if the bit number is <= LEN x 8 AND the bit specified is TRUE.
This element tests a bit in a bit string (IN) to 1. Bit string length (LEN) can be
between 1 to 512 bytes.

ST Language
OK3 := BITTEST(In3, Len3, Bit3);

FBD Language

LD Language

IL Language
Not Available

See also
SHL SHR ROL ROR BitSet BitClear

www.imopc.com 251

http://www.imopc.com/

BitClear
Note: Supported by Firmware 12.70 or above.

Inputs
IN: Any data type, typically an array.
LEN: The size of the block in bytes.
BIT: The number of the bit in the block to be cleared.

Outputs
Q : Bit valid. TRUE if the bit number is <= LEN x 8
This element clears a bit in a bit string (INe) to 1. Bit string length (LEN) can be
between 1 and 512 bytes.

ST Language
OK2 := BITCLEAR(In2, Len2, Bit2);

FBD Language

LD Language

IL Language
Not Available

See also
SHL SHR ROL ROR BitSet BitTest

www.imopc.com 252

http://www.imopc.com/

Conversion Operations

Conversion Operations
Below are the standard functions for converting a data into another data type:

Convert to Boolean
Convert to Small
Integer
Convert to INT16
Convert to INT32
Convert to Real
Convert to Time
Any_To_String

converts to boolean
converts to small (8 bit) integer
converts to 16 bit integer
converts to integer (32 bit - default)
converts to real
converts to time
converts to character string

www.imopc.com 253

http://www.imopc.com/

AnyToBool
Operator - Converts the input into boolean value.

Inputs
IN : ANYInput value

Outputs
Q : BOOLValue converted to boolean

Remarks
For DINT, REAL and TIME input data types, the result is FALSE if the input is 0.
The result is TRUE in all other cases. For STRING inputs, the output is TRUE if the
input string is not empty, and FALSE if the string is empty. In LD language, the
conversion is executed only if the input rung (EN) is TRUE. The output rung is the
result of the conversion. In IL Language, the ANY_TO_BOOL function converts the
current result.

ST Language
Q := ANY_TO_BOOL (IN);

FBD Language

LD Language
(* The conversion is executed only if EN is TRUE *)
(* The output rung is the result of the conversion *)
(* The output rung is FALSE if the EN is FALSE *)

IL Language
Op1: LD IN
ANY_TO_BOOL
ST Q

See also
ANY_TO_SINT ANY_TO_INT ANY_TO_DINT ANY_TO_REAL ANY_TO_
TIME ANY_TO_STRING

www.imopc.com 254

http://www.imopc.com/

ANY_TO_INT / ANY_TO_UINT
Operator - Converts the input into 16 bit integer value.

Inputs
IN : ANY Input value

Outputs
Q : INT Value converted to 16 bit integer

Remarks
For BOOL input data types, the output is 0 or 1. For REAL input data type, the output
is the integer part of the input real. For TIME input data types, the result is the number
of milliseconds. For STRING inputs, the output is the number represented by the
string, or 0 if the string does not represent a valid number. In LD language, the
conversion is executed only if the EN is TRUE. The ENO keeps the same value as the
EN. In IL Language, the ANY_TO_INT function converts the current result.

ST Language
Q := ANY_TO_INT (IN);

FBD Language

LD Language
(* The conversion is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

IL Language
Op1: LD IN
ANY_TO_INT
ST Q

See also
ANY_TO_BOOL ANY_TO_SINT ANY_TO_DINT ANY_TO_REAL ANY_T
O_TIME ANY_TO_STRING

www.imopc.com 255

http://www.imopc.com/

AnyToString
Operator - Converts the input into string value.

Inputs
IN : ANY Input value

Outputs
Q : STRINGValue converted to string

Remarks
For BOOL input data types, the output is '1' or '0' for TRUE and FALSE respectively.
For DINT, REAL or TIME input data types, the output is the string representation of
the input number. This is a number of milliseconds for TIME inputs. In LD language,
the conversion is executed only if the EN is TRUE. The ENO keeps the same value as
the EN. In IL language, the ANY_TO_STRING function converts the current result.

ST Language
Q := ANY_TO_STRING (IN);

FBD Language

LD Language
(* The conversion is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

IL Language
Op1: LD IN
ANY_TO_STRING
ST Q

See also
ANY_TO_BOOL ANY_TO_SINT ANY_TO_INT ANY_TO_DINT ANY_TO_
REAL ANY_TO_TIME

www.imopc.com 256

http://www.imopc.com/

AnyToSint / AnyToUsint
Operator - Converts the input into a small (8 bit) integer value.

Inputs
IN : ANY Input value

Outputs
Q : SINT Value converted to a small (8 bit) integer

Remarks
For BOOL input data types, the output is 0 or 1. For REAL input data type, the output
is the integer part of the input real. For TIME input data types, the result is the number
of milliseconds. For STRING inputs, the output is the number represented by the
string, or 0 if the string does not represent a valid number. In LD language, the
conversion is executed only if the EN is TRUE. The ENO keeps the same value as the
EN. In IL Language, the ANY_TO_SINT function converts the current result.

ST Language
Q := ANY_TO_SINT (IN);

FBD Language

LD Language
(* The conversion is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

IL Language
Op1: LD IN
ANY_TO_SINT
ST Q

See also
ANY_TO_BOOL ANY_TO_INT ANY_TO_DINT ANY_TO_REAL ANY_TO
_TIME ANY_TO_STRING

www.imopc.com 257

http://www.imopc.com/

AnyToTime
Operator - Converts the input into time value.

Inputs
IN : ANY Input value

Outputs
Q : TIME Value converted to time

Remarks
For BOOL input data types, the output is t#0ms or t#1ms. For DINT or REAL input
data type, the output is the time represented by the input number as a number of
milliseconds. For STRING inputs, the output is the time represented by the string, or
t#0ms if the string does not represent a valid time. In LD language, the conversion is
executed only if the EN is TRUE. The ENO keeps the same value as the EN. In IL
Language, the ANY_TO_TIME function converts the current result.

ST Language
Q := ANY_TO_TIME (IN);

FBD Language

LD Language
(* The conversion is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

IL Language
Op1: LD IN
ANY_TO_TIME
ST Q

See also
ANY_TO_BOOL ANY_TO_SINT ANY_TO_INT ANY_TO_DINT ANY_T
O_REAL ANY_TO_STRING

www.imopc.com 258

http://www.imopc.com/

ANY_TO_DINT / ANY_TO_UDINT
Operator - Converts the input into integer value.

Inputs
IN : ANY Input value

Outputs
Q : DINT Value converted to integer

Remarks
For BOOL input data types, the output is 0 or 1. For REAL input data type, the output
is the integer part of the input real. For TIME input data types, the result is the number
of milliseconds. For STRING inputs, the output is the number represented by the
string, or 0 if the string does not represent a valid number. In LD language, the
conversion is executed only if the EN is TRUE. The ENO keeps the same value as the
EN. In IL Language, the ANY_TO_DINT function converts the current result.

ST Language
Q := ANY_TO_DINT (IN);

FBD Language

LD Language
(* The conversion is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

IL Language
Op1: LD IN
ANY_TO_DINT
ST Q

See also
ANY_TO_BOOL ANY_TO_SINT ANY_TO_INT ANY_TO_REAL ANY_TO
_TIME ANY_TO_STRING

www.imopc.com 259

http://www.imopc.com/

AnyToReal
Operator - Converts the input into real value.

Inputs
IN : ANY Input value

Outputs
Q : REAL Value converted to real

Remarks
For BOOL input data types, the output is 0.0 or 1.0. For DINT input data type, the
output is the same number. For TIME input data types, the result is the number of
milliseconds. For STRING inputs, the output is the number represented by the string,
or 0.0 if the string does not represent a valid number. In LD language, the conversion
is executed only if the EN is TRUE. The ENO keeps the same value as the EN. In IL
Language, the ANY_TO_REAL function converts the current result.

ST Language
Q := ANY_TO_REAL (IN);

FBD Language

LD Language
(* The conversion is executed only if EN is TRUE *)
(* ENO keeps the same value as EN *)

IL Language
Op1: LD IN
ANY_TO_REAL
ST Q

See also
ANY_TO_BOOL ANY_TO_SINT ANY_TO_INT ANY_TO_DINT ANY_TO_
TIME ANY_TO_STRING

www.imopc.com 260

http://www.imopc.com/

String Operations

String Operations
Below are the standard operators and functions that manage character strings:

Set String
String Length
CmpStringConst
CmpStringVar
ASCII To DINT
ASCII To INT
ASCII To Real
DINT To ASCII
INT To ASCII
Real To ASCII

Initialise an array with a constant string
Calculate a string length
Compare a string with a constant
Compare two strings
Convert a string to a 32bit word
Convert a string to an 16bit word
Convert a string to a floating point value
Convert a 32bit word to a string
Convert a 16bit word to a string
Convert a floating point value to a string

www.imopc.com 261

http://www.imopc.com/

AsciiToDint
Operator – Perform conversion of ASCII to a Dint value.

Inputs
SRC[] : (TYPE :USINT[])
SRC is the array of ASCII value placed at the input.

Outputs
Q : (TYPE :DINT)
The ASCII value converted to Dint value.

Remarks
The value at the SRC[] array is separate ASCII value.
Ex: SRC[0]- has the first ASCII value, Q – ASCII converted to Dint value.

ST Language
Q := AsciiToDint(Src[]);

FBD Language

LD Language

IL Language
Not Available.

See also
AsciiToInt AsciiToReal

www.imopc.com 262

http://www.imopc.com/

AsciiToInt
Operator – Perform conversion of ASCII to a Int value.

Inputs
SRC[] : (TYPE : USINT[])
SRC is the array of ASCII value placed at the input.

Outputs
Q : (TYPE : INT)
The ASCII value converted to Int value.

Remarks
The value at the SRC[] array is separate ASCII value.
Ex: SRC[0]- has the first ASCII value, Q – ASCII converted to Int Value.

ST Language
Q := AsciiToInt(Src[]);

FBD Language

LD Language

IL Language
Not Available.

See also
AsciiToDint AsciiToReal

www.imopc.com 263

http://www.imopc.com/

AsciiToReal
Operator – Perform conversion of ASCII to a Real value.

Inputs
SRC[] : (TYPE : USINT[])
SRC is the array of ASCII value placed at the input.

Outputs
Q : (TYPE : REAL)
The ASCII value converted to Real value.

Remarks
The value at the SRC[] array is separate ASCII value.
Ex: SRC[0]- has the first ASCII value, Q – ASCII converted to Real Value.

ST Language
Q := AsciiToReal(Src[]);

FBD Language

LD Language

IL Language

Not Available.

See also
AsciiToDint AsciiToInt

www.imopc.com 264

http://www.imopc.com/

DintToAscii
Operator – Perform conversion of Dint to ASCII value.

Inputs
SRC: (TYPE : DINT)
This is the Input in Dint format for conversion in ASCII value.

DST[] : (TYPE : USINT[])
The converted Dint into ASCII is placed in this array of DST.

#POINT : (TYPE : INT)
This specifies the place of the point from right of the maximum length allocated.

#MAXLEN: (TYPE : INT)
The maximum number of digits allowed for conversion.

#FILL0: (TYPE : BOOL)
Fills the vacant place after conversion from Dint to ASCII with zeroes.

Outputs
Q : (TYPE : BOOL)
The output is TRUE if the Dint value is converted to ASCII successfully.

Remarks
The value at the SRC are separate ASCII values.
Ex: DST[0] - has the first ASCII value & so on.

ST Language
Q := DintToAscii(Src, Dst[], #Point, #MaxLen, #Fill0);

FBD Language

LD Language
IL Language
OP1: LD SRC

DINTTOASCII Dst[], #Point, #MaxLen, #Fill0
ST Q

See also
IntToAscii RealToAscii

www.imopc.com 265

http://www.imopc.com/

IntToAscii
Operator – Perform conversion of Int to ASCII value.

Inputs
SRC: (TYPE : INT)
This is the Input in Int format for conversion in ASCII value.

DST[] : (TYPE : USINT[])
The converted Dint into ASCII is placed in this array of DST.

#POINT : (TYPE : INT)
This specifies the place of the point from right of the maximum length allocated.

#MAXLEN: (TYPE : INT)
The maximum number of digits allowed for conversion.

#FILL0: (TYPE : BOOL)
Fills the vacant place after conversion from Dint to ASCII with zeroes.

Outputs
Q : (TYPE : BOOL)
The output is TRUE if the Dint value is converted to ASCII successfully.

Remarks
The value at the SRC are separate ASCII value.
Ex: DST[0] - has the first ASCII value & so on.

ST Language
Q := IntToAscii(Src,Dst[], #Point, #MaxLen, #Fill0);

FBD Language

LD Language

IL Language

OP1: OP1: LD SRC

INTTOASCII Dst[], #Point, #MaxLen, #Fill0
ST Q

See also
IntToAscii RealToAscii

www.imopc.com 266

http://www.imopc.com/

RealToAscii
Operator – Perform conversion of Real to ASCII value.

Inputs
SRC: (TYPE : REAL)
This is the Input in Real format for conversion in ASCII value.

DST[] : (TYPE : USINT[])
The converted Dint into ASCII is placed in this array of DST.

#POINT : (TYPE : INT)
This specifies the place of the point from right of the maximum length allocated.

#MAXLEN: (TYPE : INT)
The maximum number of digits allowed for conversion.

#FILL0: (TYPE : BOOL)
Fills the vacant place after conversion from Dint to ASCII with zeroes.

Outputs
Q : (TYPE : BOOL)
The output is TRUE if the Dint value is converted to ASCII successfully.

Remarks
The value at the SRC are separate ASCII value.
Ex: DST[0] - has the first ASCII value & so on.

ST Language
Q := RealToAscii(Src, Dst[], #Point, #MaxLen, #Fill0);

FBD Language

LD Language

IL Language

OP1: OP1: LD SRC

REALTOASCII Dst[], #Point, #MaxLen, #Fill0
ST Q

See also
DintToAscii IntToAscii

www.imopc.com 267

http://www.imopc.com/

SetString
Operator – Sets the ASCIIvalue of the source at the destination array.

Inputs
SRC : (TYPE : STRING)
SRC is the source string.

DST[] : (TYPE :USINT[])
DST is the converted ASCII value.

Outputs
Q : (TYPE :BOOL)
Output goes high if the SetString is successful.

Remarks
The value at the DST[] array is character wise ASCII value.
Ex: DST[0]- has the first alphabet’s ASCII value, DST[1]- has the second alphabet’s
ASCII value & so on.

ST Language
Q := SetString(Src, Dst[]);

FBD Language

LD Language

IL Language
Op1: LD SRC

SetString Dst[]
ST Q

See also
CmpStringConst CmpStringVar StringLen

www.imopc.com 268

http://www.imopc.com/

StringLen
Operator – Length of a given input string.

Inputs
S[] : (TYPE : USINT[])
S is the source string ASCII value.

Outputs
LEN : (TYPE :INT)
Length of the elements in array S.

Remarks
En is the Enable input & Eno is the enable output. En & Eno will be in same state.

ST Language
LEN := StringLen(S[]);

FBD Language

LD Language

IL Language
Not Available.

See also
CmpStringConst CmpStringVar SetString

www.imopc.com 269

http://www.imopc.com/

CmpStringVar
Operator – Perform comparison of String variables.

Inputs
S1[] : (TYPE : USINT[])
S1 is the array of ASCII values placed to compare with the input at S2.

S2[] : (TYPE : USINT[])
S2 is the array of ASCII values to which input S1 is compared with.

#COUNT : (TYPE : INT)
The number of characters to be compared.

Outputs
Q : (TYPE :BOOL)
Output goes high if the input ASCII values are equal for a given count.

Remarks
Each element of array S1[] is compared with each element of array S2[].
Ex: S1[0] is compared with value at S2[0], till the given count at #COUNT input.

ST Language
Q := CmpStringVar(S1[], S2[], #Count);

FBD Language
LD Language

IL Language
Not Available.

See also
SetString CmpStringConst StringLen

www.imopc.com 270

http://www.imopc.com/

CmpStringConst
Operator – Perform comparison of String with a constant.

Inputs
S1[] : (TYPE : USINT[])
S1 is the array of ASCII values placed to compare with the input at S2.

S2: (TYPE : STRING)
S2 is the string to which input S1 is compared.

Outputs
Q : (TYPE : BOOL)
Output goes high if the inputs are equal.

Remarks
The value at the S1[] array is character wise ASCII value.
Ex: S1[0]- has the first alphabet’s ASCII value, S1[1]- has the second alphabet’s
ASCII value & so on.

ST Language
Q := CmpStringConst(S1[], S2);

FBD Language
LD Language

IL Language
Not Available.

See also
SetString CmpStringVar StringLen

www.imopc.com 271

http://www.imopc.com/

CANOpen Operations

CANOpen Operations
Below are the standard functions for managing CANOpen operations:

SDO Write Modifies given Object Dictionary Entry.
SDO Read Reads the given Object Dictionary Entry.
Get Local ID Reads Local CANOpen Node ID.
Get NMT State Read Local or Slave node CANOpen NMT state.
Set NMT State Sets NMT state of given Node in CANOpen Network.
Receive Emergency message
from a given Device Receives Emergency message from a specific Device.

Receive Emergency message
from any Device Receives Emergency message from any Device in the network.

www.imopc.com 272

http://www.imopc.com/

SDO Read
This element reads the given object dictionary entry or the i³ register contents. If node
is Master then using this block an object dictionary entry of any slave node in the
network can be read. In case of Slave only own object dictionary entries can be read.

Inputs
EN – (Type: BOOL)
The "EN" input is a condition. If EN is TRUE State then block is executed.
CB[] - (Type: INT[])
This input is specified as register type and offset reference. This register is the first of
three (3) registers that contain the information for the SDO read CAN message.
Word 1 Node ID – Node ID of the device (1 to 127) in case of Master only. For
accessing the object dictionary / i³ register contents for self node, value 0 needs to be
used.
Word 2 Index Value - Any valid 16-bit address to access the CANOpen dictionary
supported by the node; for array and records the address is extended by an 8-bit sub-
index.
Word 3 Sub-Index value - Any valid 8-bit sub-address to access the sub-objects of
arrays and records supported by the node.

Outputs
CBO[] - (Type: INT[])
Output is specified as a Register Type and Offset reference. This register is the first of
five (5) registers that contain the information of output data.
Word 1 Kernel Error – Gives value of Kernel Error.
Word 2 SDO Error – SDO Error (Higher 16 bits)
Word 3 SDO Error – SDO Error (Lower 16 bits)
Word 4 Data Length – Amount of data to read (Max data length can be 4 bytes)
Word 5 Start of Data – Any valid Register address

ST Language
(*Inst_CANOPENSDOREAD is a declared instance of SDO Read Block*)
Inst_CANOPENSDOREAD(ENr, CBR, CBOR);

FBD Language

LD Language

www.imopc.com 273

http://www.imopc.com/

IL Language
BEGIN_IL
OP2 : CAL Inst_CANOPENSDOREAD(ENR1(*BOOL*), CBR5(*INT*),
CBOR5(*INT*))
END_IL

See also
SDO Write Get Local ID Get NMT State Set NMT State
Receive Emergency message from a given Device
Receive Emergency message from any Device

www.imopc.com 274

http://www.imopc.com/

SDO Write
This element is used to change given object dictionary entry or to change the i³
register contents. If node is Master then using this block an object dictionary entry of
any slave node in the network can be modified. In case of Slave only own object
dictionary entries can be modified.

Inputs
EN – (Type: BOOL)
The "EN" input is a condition. If EN is TRUE State then block is executed.
CB[] - (Type: INT[])
This input is specified as register type and offset reference. This register is the first of
five (5) registers that contain the information for the SDO write CAN message.
Word 1 Node ID – Node ID of the device (1 to 127) in case of Master only. For
accessing the object dictionary / i³ register contents for self node, value 0 needs to be
used.
Word 2 Index Value – Any valid 16-bit address to access the CANOpen dictionary
supported by the node; for array and records the address is extended by an 8-bit sub-
index.
Word 3 Sub-Index value – Any valid 8-bit sub-address to access the sub-objects of
arrays and records supported by the node.
Word 4 Data Length - Amount of data to write (Max data length can be 4 bytes).
Word 5 Start of Data - Any valid Register address.

Outputs
CBO[] - (Type: INT[])
Output is specified as a Register Type and Offset reference. This register is the first of
three (3) registers that contain the information of output data.
Word 1 Kernel Error – Gives value of Kernel Error.
Word 2 SDO Error – SDO Error (Higher 16 bits)
Word 3 SDO Error – SDO Error (Lower 16 bits)

ST Language
(*Inst_CANOPENSDOWRITE is a declared instance of SDO Write Block*)
Inst_CANOPENSDOWRITE(EN1, CB, CBO);

FBD Language

www.imopc.com 275

http://www.imopc.com/

LD Language

IL Language
BEGIN_IL
OP1 : CAL CANOSDOW (EN11(*BOOL*), CB1(*INT*), CBO1(*INT*))
END_IL

See also
SDO Read Get Local ID Get NMT State Set NMT State
Receive Emergency message from a given Device
Receive Emergency message from any Device

www.imopc.com 276

http://www.imopc.com/

Get Local ID
This element reads the local CANOpen node ID.
Enabling the input power to this element gets the Local Node ID in the configured
register.

ST Language
(*Inst_CANOPENGETLOCID is a declared instance of Get Local ID Block*)
Inst_CANOPENGETLOCID(ENL1);

FBD Language

LD Language

IL Language
BEGIN_IL
OP3 : CAL Inst_CANOPENGETLOCID(ENL2)
END_IL

See also
SDO Write SDO Read Get NMT State Set NMT State
Receive Emergency message from a given Device
Receive Emergency message from any Device

www.imopc.com 277

http://www.imopc.com/

Get NMT State
This element reads the local or slave node CANOpen NMT state.

Inputs
EN – (Type: BOOL)
The "EN" input is a condition. If EN is TRUE State then block is executed.
NodeID - (Type: INT)
Node ID of the device for which NMT state needs to be obtained. For accessing the
NMT state of self node, value 0 needs to be used.

Outputs
NMT State - (Type: INT)
Gives the NMT state of the device.

Note:
Following are the possible NMT states and their values in Hex:
NMT State Value in Hex
Preoperational 7F
Operational 5
Stop 4

ST Language

(*Inst_CANOPENGETSTATE is a declared instance of Get NMT State Block*)

Inst_CANOPENGETSTATE(ENN1, NodeID_ST);

FBD Language

LD Language

www.imopc.com 278

http://www.imopc.com/

IL Language

BEGIN_IL

OP4 : CAL Inst_CANOPENGETSTATE(ENN2(*BOOL*), NodeID_IL(*INT*))

END_IL

See also
SDO Write SDO Read Get Local ID Set NMT State
Receive Emergency message from a given Device
Receive Emergency message from any Device

www.imopc.com 279

http://www.imopc.com/

Set NMT State
This element sets NMT state of given node in the CANOpen network. This block can only be
used if node is configured as Master.

Inputs
EN – (Type: BOOL)
The "EN" input is a condition. If EN is TRUE State then block is executed.
CB[] - (Type: INT[])
This input is specified as register type and offset reference. This register is the first of
two (2) registers that contain the information of input data.
Word1 Node ID - Node ID of the device. For setting the NMT state of self node,
value 0 needs to be used.
Word 2 NMT State – NMT command of corresponding NMT State.
Note:
Following are the NMT commands for corresponding NMT states:

States NMT Commands
Preoperational 80
Operational 1
Stop 2
Reset Comm 81
Rest Node 82

Outputs
KernelError - (Type: INT)
Indicates any kernel error.

ST Language
(*Inst_CANOPENSETNMT is a declared instance of Set NMT State Block*)
Inst_CANOPENSETNMT(ENS, CBS);

FBD Language

LD Language

IL Language

www.imopc.com 280

http://www.imopc.com/

BEGIN_IL
OP5 : CAL Inst_CANOPENSETNMT(EN_IL(*BOOL*), CB_IL(*INT*))
END_IL

See also
SDO Write SDO Read Get Local ID Get NMT State
Receive Emergency message from a given Device
Receive Emergency message from any Device

www.imopc.com 281

http://www.imopc.com/

Receive Emergency Message From a Given Device
This element is used to receive emergency message from specific device.

Inputs
EN – (Type: BOOL)
The "EN" input is a condition. If EN is TRUE State then block is executed.
NodeID - (Type: INT)
Node ID of the device for which emergency message needs to be received

Outputs
CBO[] - (Type: INT[])
Output is specified as a Register Type and Offset reference. This register is the first of
five (5) registers that contain the information of output data.
Word1 Kernel error – Gives value of Kernel Error.
Word2 EMC Value in 64 bit – Gives the emergency message/codes.
Word3 – Lower 8 bit represents Error register and upper 8 Bit Manufacturer specific
error field.
Word4 – Higher 16 bits of Manufacturer specific error.
Word5 – Lower 16 bits of Manufacturer specific error.

ST Language
(*Inst_CANOPENRCEMCDEV is a declared instance of Receive Emergency
Message from a given Device Block*)
Inst_CANOPENRCEMCDEV(EN_ST, Node_ST, CBO_ST);

FBD Language

LD Language

IL Language

www.imopc.com 282

http://www.imopc.com/

BEGIN_IL
OP6 : CAL Inst_CANOPENRCEMCDEV(EN_IL1(*BOOL*), Node_IL(*INT*),
CBO_IL(*INT*))
END_IL

See also
SDO Write SDO Read Get Local ID Get NMT State Set NMT State
Receive Emergency message from any Device

www.imopc.com 283

http://www.imopc.com/

Receive Emergency Message From Any Device
This element is used to receive emergency message from any device in the network.

Inputs
EN – (Type: BOOL)
The "EN" input is a condition. If EN is TRUE State then block is executed

Outputs
CBO[] - (Type: INT[])
Output is specified as a Register Type and Offset reference. This register is the first of
Six (6) registers that contain the information of output data.
Word1 Kernel error – Gives value of Kernel Error.
Word2 NodeID – Device Node ID.
Word3 EMC Value in 64 bit – Indicates the emergency message/codes.
Word4 – Lower 8 bit represents Error register and upper 8 Bit Manufacturer specific
error field.
Word5 – Higher 16 bits of Manufacturer specific error.
Word6 – Lower 16 bits of Manufacturer specific error.
Note: Manufacturer specific error field represents IMO CANOpen Status register
contents

ST Language
(*Inst_CANOPENRCEMC is a declared instance of Receive Emergency Message
from any Device Block*)
Inst_CANOPENRCEMC(EN_ST1, CBO_ST1);

FBD Language

LD Language

IL Language
BEGIN_IL
OP7 : CAL Inst_CANOPENRCEMC(EN_IL2, CBO_IL1)

www.imopc.com 284

http://www.imopc.com/

END_IL

See also
SDO Write SDO Read Get Local ID Get NMT State Set NMT State
Receive Emergency message from a given Device

www.imopc.com 285

http://www.imopc.com/

Error_Details

Kernel Error:

0x0 No Kernel Error.
0x1 Other Kernel Errors.
0x21 SDO Engine is Busy.
0x22 Memory Access Error.
0x23 SDO Timeout Error.
0x24 Not Supported.
0x25 Emergency Busy Error.
0x26 Input Data Error.
0xFE Waiting for Response.
0xFF Kernel Not Active

SDO Error:

0x5040002 Invalid Block Size.
0x5040003 Invalid Sequence Count.
0x6010000 Index Not Supported.
0x6010002 Index Read Only.
0x6070012 Data Length is high.
0x6070013 Data Length is Low.
0x8000022 Invalid NMT State.
0x6040041 PDO Mapping Failed.
0x6040042 PDO Length Exceeded.
0x6090011 Sub Index Not Supported.
0x6090030 Value Range Exceeded.
0x6040043 Parameter Incompatible

Error register Bit details

www.imopc.com 286

http://www.imopc.com/

Emergency Codes

See also

www.imopc.com 287

http://www.imopc.com/

SDO Write SDO Read Get Local ID Get NMT State Set NMT State
Receive Emergency message from a given Device
Receive Emergency message from any Device

www.imopc.com 288

http://www.imopc.com/

Screen Operations

Screen Operations
Below are the standard operators that perform Screen Operations:

Change
Screen
Display
Screen

Changes a screen
Displays a screen

www.imopc.com 289

http://www.imopc.com/

ChangeScreen
Operator- Changes a screen.

Inputs
#NUMBER - (TYPE: DINT)
#Number format means can able to enter integer value only.

Outputs
Q - (TYPE: DINT)
Register should be in R type only.

Remarks
Change Screen does not force screen to remain active. Operator may choose to change
screen after using various navigation methods (menus, screen jumps, scrolling...).
Only one change screen to be active at a time. If a more then one has no affect,
however writing directly to %SR1 will change the screen.

ST Language
OUT := ChangeScreen(#NUMBER);

FBD Language

LD Language

Note: Power does not flow through the display coil.

IL Language
Op1: LD #NUMBER

ChangeScreen
ST Q

See also
DisplayScreen

www.imopc.com 290

http://www.imopc.com/

DisplayScreen
Operator - Displays a screen.

Input
#Number - (TYPE: DINT)
Screen number that is to be displayed. It can take integer value only.

Output
Q - (TYPE: DINT)
Output Register should be in R type only.

Remarks
Display Screen will override any other user screen being displayed. If more than one
display screen is active at a time, the last one in the ladder program is displayed.
When a screen is being forced, it can be read from System Register %SR2.

ST Language
Q := DisplayScreen(#NUMBER);

FBD Language

LD Language

Note: Power does not flow through the display coil.

IL Language
Op1: LD #NUMBER

DisplayScreen
ST Q

See also
ChangeScreen

www.imopc.com 291

http://www.imopc.com/

Serial Operations

Serial Operations
Below are the standard operators that perform Serial Communication operations:

Close Communication
Port
Modbus Master
Modbus Slave
Modbus Slave with
Exception
Modem Auto Answer
Modem Auto Dial
Modem Send Iint String
Open Communication
Port
Open Flexible Comm.
Port
Receive Data
Send Data

Close communication Port
Configures Port as Modbus Master
Configures Port as Modbus Slave
Configures Port as Modbus Slave with Exception Message
Configures modem to auto answer a call after predefined rings
Configures dialing to a modem with the supplied phone No.
Checks a Modem by sending the initialization string
Opens a desired port for communication
Opens a flexible port for communication
Receives data through an opened port
Sends data through an opened port

www.imopc.com 292

http://www.imopc.com/

CloseComm
Operator - Performs the closure of the channel of the selected port.

Inputs
EN : Enable input (TYPE : BOOL)
#PORT: Port number (TYPE : DINT)

Outputs
Q : Output if the port closure is successful / Port already closed. (TYPE : BOOL)
If you attempt to close a port that does not exist, power flow through the element is
FALSE.

Remarks
This element closes the channel to the selected port. There are no operational
parameters except the Port Number. This entry must be a decimal constant.

ST Language
Q := CloseComm(EN, #Port);

FBD Language

LD Language

IL Language
Op1 : LD EN

CloseComm #PORT
ST Q

See also
Ope
nCo
mm
 Rc
vCo
mm

www.imopc.com 293

http://www.imopc.com/

ModbusMaster
Operator – Configures a opened port as Modbus master.

Inputs
EN : Enable input (TYPE : BOOL)
#Port: (TYPE : DINT)
The communication port previously open by the ladder program with Protocol set to
Modbus ASCII or Modbus RTU.
Timeout: (TYPE : INT)
Specified as either a register reference, or as a decimal constant (with a range of 0 to
1023). This specifies the amount of time that is allowed between a Modbus command
and its response. This parameter is in terms of 100 milliseconds (i.e., 100 = 10.0 Sec).
Trigger: (TYPE : BOOL)
Specified as a bit register reference. When this bit goes from an off to on transition,
the block transmits the Modbus message defined by the message control block (
MCB). When this input is low, the status word is cleared.
MCB[]: Message Control Box (TYPE : INT[])
Specified as a register reference. This register is the first of six (6) registers that
contain the control information for this block.

Outputs
Status: (TYPE : INT)
A WORD (16-bit) register used to hold the results of the element.

Remarks
1) MCB: Message Control Box

Word 1 Slave ID - value from 1 to 247 indicating the device to receive the
message

Word 2 Modbus Command - Modbus command to send to the slave

Word 3 Slave Offset - Starting point in the Modbus slave for data to read or write

- 1

Word 4 Data Length - Amount of data to read or write

Word 5 Controller Reference Type - Enumerated controller register type

Word 6 Controller Reference Offset - Controller register number - 1

2) Status bit assignment:
Bit Number Status
1 Request Succeeded (OK)
2 Request Failed (See additional errors below)
3 ID out of range
4 Length exceeds Modbus frame

www.imopc.com 294

http://www.imopc.com/

5 Command not supported
6 Invalid controller reference
7 Reserved
8 Reserved
9 Timeout Expired
10 Frame or parity error
11 Invalid checksum / crc from slave
12 Invalid format from slave
13 Slave rejected the command
14 Slave rejected the address
15 Slave rejected the data
16 Slave device error

This function passes power flow if the associated port is opened and ready for
communications.

ST Language
(* ModMaster is a declared instance of ModbusMaster function block *)

ModMaster(EN, #PORT, Timeout, Trigger, MCB[]);
status := ModMaster.Status;

FBD Language

LD Language

IL Language
(* ModMaster is a declared instance of ModbusMaster function block *)

OP1: CAL ModMaster(EN, #PORT, Timeout, Trigger, MCB[])

LD ModMaster.Status

www.imopc.com 295

http://www.imopc.com/

ST STATUS

See also
M
o
d
b
u
s
S
l
a
v
e

www.imopc.com 296

http://www.imopc.com/

ModbusSlave
Operator – Configures a opened port as Modbus Slave.

Inputs
EN: Enable input (TYPE : BOOL)
#Port: (TYPE : DINT)
The communication port previously open by the ladder program with Protocol set to
Modbus ASCII or Modbus RTU.
Address: (TYPE : INT)
This specifies either a register or as a decimal constant (with a range of 1 to 247). This
specifies the Modbus address the controller uses to respond to Modbus request
Time: (TYPE : INT)
This specifies either a register or as a decimal constant (with a range of 0 to 1023).
This specifies the amount of time that may pass between request from the master
before the in-activity timeout bit is set in the status word. This parameter is in terms of
100 milliseconds (i.e., 100 = 10.0 Sec).

Outputs
Status: (TYPE : INT)
A WORD (16-bit) register used to hold the results of the element.

Remarks
Status bit assignment:
Bit Number Status
1 Inactivity Timeout
4 Valid message received (toggles)
5 Parity error (single pass)
6 Frame Error (single pass)
7 Overrun error (single pass)
8 Crc/Checksum error (single pass)

ST Language
(* ModSlav is a declared instance of ModSlave function block *)

ModSlav(EN, #PORT, Address, Time);
Status : = ModSlav.Status;

FBD Language

LD Language

www.imopc.com 297

http://www.imopc.com/

IL Language
(* ModSlav is a declared instance of ModSlave function block *)

OP1 : CAL ModSlav(EN, #PORT, Address, Time)

LD ModSlav.Status
ST status

See also
M
o
d
b
u
s
M
a
s
t
e
r

www.imopc.com 298

http://www.imopc.com/

ModbusSlaveEx
Operator – Configures a opened port as Modbus Slave with Exception Message.

Inputs
EN: Enable input (TYPE : BOOL)
#Port: (TYPE : DINT)
The communication port previously open by the ladder program with Protocol set to
Modbus ASCII or Modbus RTU.
Address: (TYPE : INT)
This specifies either a register or as a decimal constant (with a range of 1 to 247). This
specifies the Modbus address the controller uses to respond to Modbus request.
Time: (TYPE : INT)
This specifies either a register or as a decimal constant (with a range of 0 to 1023).
This specifies the amount of time that may pass between request from the master
before the in-activity timeout bit is set in the status word. This parameter is in terms of
100 milliseconds (i.e., 100 = 10.0 Sec).
COUNT: (TYPE : INT)
This specifies as a register. This contains the number of bytes in the Message Data
buffer to send. Transition from zero to a non-zero value triggers the transmission of
one Exception Message.
DATA: (TYPE : INT)
This specifies as a register. This is the first register number of an array, which
contains the Exception Message.

Outputs
Status: (TYPE : INT)
A WORD (16-bit) register used to hold the results of the element.

Remarks
Status bit assignment:
Bit
Number Status

1 Inactivity Timeout
4 Valid message received (toggles)
5 Parity error (single pass)
6 Frame Error (single pass)
7 Overrun error (single pass)
8 Crc/Checksum error (single pass)
9 Exception message send (reset when e_cnt = 0)
10 Exception message exceeds send buffer size (reset when e_cnt = 0)

11 Attempt to send exception message when transmit busy (reset when
e_cnt = 0)

ST Language
(* ModSlavEx is a declared instance of ModSlaveEx function block *)

ModSlavEx(EN, #PORT, Address, Time, Count, Data);
Status : = ModSlavEx.Status;

www.imopc.com 299

http://www.imopc.com/

FBD Language

LD Language

IL Language
(* ModSlavEx is a declared instance of ModSlaveEx function block *)

OP1 : CAL ModSlavEx(EN, #PORT, Address, Time, Count, Data)

LD ModSlavEx.Status
ST status

See also
ModbusMaster ModbusSlave

www.imopc.com 300

http://www.imopc.com/

ModemAutoAnswer
Operator – Places the specified modem in Auto-answer mode. The modem will
answer incoming calls after the specified number of rings. Set the number of rings to
zero to disable auto answer mode on the modem.

Inputs
EN : Enable input (TYPE : BOOL)
#Port: (TYPE : DINT)
The communication port opened.
NbRing: (TYPE : DINT)
Number of Rings, after which the modem answers the call.

Outputs
Status: (TYPE : INT)
Status indicates the progress and success or failure of the operations.

Remarks
1) General Status Results
The modem function block returns a status word to indicate the progress and success
or failure of the operations. All Actions share this result information:
-1 When the function is not active, output from the function block is OFF.
-2 When the function is being executed, the output remains OFF.
-3 When a function times-out, because the modem did not respond, the output remains
OFF.
0 The modem accepted the command, the output depends on the function.

1. The modem successfully connected, the output turns ON.
2. When an incoming ring is detected, the output remains OFF.
3. The modem loses carrier, the output turns OFF.
4. When the command results in an error, the output remains OFF

2) Action
When the input to this function block transitions from OFF to ON, the controller
attempts to set the modem to auto answer mode. When the modem has been placed in
auto answer mode, the function block output remains OFF, and the status is loaded
with 0 to indicate the modem is OK. Power flow into the function block must be kept
ON at this point. When an incoming call is received,the output of the function block
remains OFF, and the status is loaded with 2 to indicate ringing. After the
programmed number of rings, the modem answers. If a connection is established, the
output of the function block turns ON and the status is loaded with 1 to indicate a
connection. If the connection is lost, (other side hangs-up ...) the output turns OFF and
the status is loaded with 3 to indicate a loss of carrier.
If the modem is connected to another device and the input to the function block
transitions from ON to OFF, the modem hangs-up, the function block output turns
OFF, and the status is loaded with -1 to show the function block is inactive.

ST Language
(* AutoAns is a declared instance of ModemAutoAnswer function block *)
AutoAns(EN, #PORT, # NbRing);
Status := AutoAns.Status;

www.imopc.com 301

http://www.imopc.com/

FBD Language

LD Language

IL Language
(* AutoAns is a declared instance of ModemAutoAnswer function block *)

Op1: CAL AutoAns(EN, #PORT, # NbRing)

LD AutoAns.Status
ST STATUS

See also
ModemAutoDial ModemSendInit

www.imopc.com 302

http://www.imopc.com/

ModemAutoDial
Operator – Perform dialing to a modem with the supplied phone number.

Inputs
EN : Enable input (TYPE : BOOL)
#Port: (TYPE : DINT)
The communication port opened.
#Option: (TYPE : INT)
Option is the command your modem requires to initiate dialing.
Str: (TYPE : STRING)
Str is the number to be dialed. Do not use spaces, dashes, or any other punctuations
except those required by the modem.

Outputs
Status: (TYPE : INT)
Status indicates the progress and success or failure of the operations.

Remarks

1) Action
When the input to this function block transitions from OFF to ON, the
controller attempts to dial the modem with the supplied phone number. If the
modem dials and successfully connects to another modem, the output of the
function block turns ON, and status is loaded with 1 to indicate a connection.
Keeping power flow to the dial function block allows the controller to monitor
the connection. If the connection is lost (the other side hangs-up...), the output
to the function block turns OFF and the status is loaded with 3 to indicate a
loss of carrier.
If the input to this function block transitions from ON to OFF, the modem
hangs up, the function block output turns OFF, and the status is loaded with -1
to show the function block is inactive.

2) Number to be dialed
Specifies the phone number to be dialled. Dependant on the modem used it is also
possible to include special commands in the dial string, such as those necessary to
insert a pause or to defeat Call Waiting. Typically a comma "," may be used to insert a
pause, for example when it is required to obtain an outside line.
Examples:
· 9,7654321 Dials for an outside line, pauses to make the connection, then dials
local number 765-4321
· *7013175551212 Disables Call Waiting, then dials long distance to (317)555-
1212.

3) Option
 The above command is modem specific. The values default to common commands
used to program modems using the industry standard AT command set. Most current
modems implement this command structure, but refer to the User Manual that comes

www.imopc.com 303

http://www.imopc.com/

with the modem in order to determine the exact strings necessary to perform these
tasks.

ST Language
(* AutoDial is a declared instance of ModemAutoDial function block *)
AutoDial(EN, #PORT, #Option, Str);
Status := AutoDial.Status;

FBD Language

LD Language

IL Language
(* AutoDial is a declared instance of ModemAutoDial function block *)

Op1: CAL AutoDial(EN, #PORT, #Option, Str)

LD AutoDial.Status
ST STATUS

See also
ModemAutoAnswer ModemSendInit

www.imopc.com 304

http://www.imopc.com/

ModemSendInit
Operator – Perform checking of Modem by sending the initialization string

Inputs
EN : Enable input (TYPE : BOOL)
#PORT: (TYPE : DINT)
The communication port opened.
INIT: (TYPE : STRING)
Initialization String.

Outputs
Status: (TYPE : INT)
Status indicates the progress and success or failure of the operations.

Remarks
1) Action
When the input to this function block transitions from OFF to ON, the controller
sends the initialization string to the modem. If the modem returns an OK response,
the output of the function block turns ON, and the status register is loaded with 0. If
the modem returns an error response because the init string is not valid, the status
register is loaded with a 4. If the modem does not respond, the status is loaded with -3
indicating a timeout.

ST Language
(* ModSIN is a declared instance of ModSendInit function block *)
ModSIN(EN, #PORT, INIT);
Status : = ModSIN.Status;

FBD Language

LD Language

IL Language
(* ModSIN is a declared instance of ModSendInit function block *)
Op1 : CAL ModSIN(EN, #PORT, INIT)

LD ModSIN.Status
ST STATUS

See also
ModemAutoAnswer ModemAutoDial

www.imopc.com 305

http://www.imopc.com/

OpenComm
Operator - Performs the opening of a desired port for communication.

Inputs
EN : Enable input (TYPE : BOOL)
#Port: Port number (TYPE : DINT)
#Baud: Baud setting (TYPE : DINT)
#Parity: Parity setting (TYPE : DINT)
#Data: Data bits (TYPE : DINT)
#Stop: Stop bits (TYPE : DINT)
#Handshake: Handshake (TYPE : DINT)
#Protocol: Protocol setting (TYPE : DINT)
#Mode: Mode of communication (TYPE : DINT)

Outputs
Q : Output if the port open is successful (TYPE : BOOL)

Remarks
The Open Port element creates a channel to the desired communication port. The
operational parameters (baud rate, etc) are also set by this element. The channel
remains open until closed by the Close Port element or the controller is taken out of
RUN mode.

ST Language
Q := OpenComm(EN, #Port, #Baud, #Parity, #Data, #Stop, #Handshake, #Protocol,
#Mode);

FBD Language

LD Language

www.imopc.com 306

http://www.imopc.com/

IL Language
OP1 : LD EN

OpenComm #Port, #Baud, #Parity, #Data, #Stop, #Handshake, #Protocol,
#Mode
ST Q

Operands:

The following values can be fed to different Parameters of the block:
1. #Ports : Ports selection (Values 0 - 2)
 Port 1 (MJ1) = 0
 Port 2 (MJ2) = 1
 Port 3 (CN1) = 2
2. #Baud : The Baud should be the same as that of the other device it is
communicating to.

BAUD_300, // 0 = 300 baud
BAUD_600, // 1 = 600 baud
BAUD_1200, // 2 = 1200 baud
BAUD_2400, // 3 = 2400 baud
BAUD_4800, // 4 = 4800 baud
BAUD_9600, // 5 = 9600 baud
BAUD_19200, // 6 = 19200 baud
BAUD_38400, // 7 = 38400 baud
BAUD_57600, // 8 = 57600 baud
BAUD_115200 // 9 = 115200 baud
BAUD_14400 // 10 = 14400 baud
BAUD_28800 // 11 = 14400 baud
BAUD_10400 // 12 = 14400 baud

3. #Parity : Parity can be configured as 0- 4
PARITY_NONE 0 = No parity
PARITY_ODD 1 = Odd parity

www.imopc.com 307

http://www.imopc.com/

PARITY_EVEN 2 = Even parity
PARITY_MARK 3 = Mark parity
PARITY_SPACE 4 = Space parity

4. #Data : Data bit can be 5 to 8
DATA bits 0 = 5 data bits
DATA bits 1 = 6 data bits
DATA bits 2 = 7 data bits
DATA bits 3 = 8 data bits

5. #Stop : Stop bits cab be configured as 1 or 2
STOP_1, // 0 = 1 stop bit
STOP_2, // 1 = 2 stop bits

6. #Handshake : Handshake can be configured as 0 to 5
HANDSHAKE_NO, // 0 = No handshaking
HANDSHAKE_SW, // 1 = Software handshaking (XON/ XOFF)
HANDSHAKE_HW, // 2 = Hardware handshaking (RTS/ CTS)
HANDSHAKE_MD_FD, // 3 = Multidrop full-duplex handshaking
HANDSHAKE_MD_HD, // 4 = Multidrop half-duplex handshaking
HANDSHAKE_RM // 5 = Radio modem handshaking

7. #Protocol : Protocol can be configured as 0 to 5
PROTOCOL_RISM, // 0 = RISM protocol
PROTOCOL_CsCAN, // 1 = iCAN protocol (not supported)
PROTOCOL_GENERIC, // 2 = Generic ladder-driven protocol
PROTOCOL_RTU, // 3 = Modbus RTU ladder-driven protocol
PROTOCOL_ASCII // 4 = Modbus ASCII ladder-driven protocol
PROTOCOL_MODBUS_TCP // 5 = Modbus TCP ladder - driven protocol

8. #Mode : Mode can be configured as 0 to 2
PORT_RS232, // 0 = Enable RS232 port
PORT_RS485 // 1 = Enable RS485 port PORT_OPTION1
MODEM // 2 = MODEM
ETHERNET // 3 = Ethernet
Fiber A // 4 = Fiber A
Fiber B // 5 = Fiber B
GSM Dual // 6 = GSM Dual
GSM Quad // 7 = GSM Quad
Radio 900MHZ // 8 = Radio 900Mhz
Radio Zigbee // 9 = Radio Zigbee

Note:
Modbus RTU forces 8 data bits
Modbus ASCII forces 7 data bits

See also

www.imopc.com 308

http://www.imopc.com/

C
l
o
s
e
C
o
m
m

R
c
v
C
o
m
m

www.imopc.com 309

http://www.imopc.com/

RcvComm
Operator - Performs receiving of data through an opened port.

Inputs
EN : Enable input (TYPE : BOOL)
#PORT: Port number (TYPE : DINT)
Port number is the comm port previously open by the ladder program.
N : (TYPE : INT)
This value indicates the number of bytes to be received.
DATA[] : (TYPE : USINT[])
Data is the address where the received data is to be stored. This must be specified as a
register.

Outputs
COUNT : (TYPE : INT)
Contains the number of bytes that have been copied from the port's internal buffer to
the registers at DATA (or -1 when the function is not active).

Remarks
If the port is not opened the Receive Element does nothing, and power flow through
the element is FALSE.
Power flow through the element is FALSE until the requested number of characters
has been received from the comm port buffer (at which time the power flow will be
TRUE). It is possible that the element can not transfer all data in one program scan
time, especially at slower baud rates.
The Input N can be a register references. The maximum acceptable value is 255 bytes.
When the register contains a value less than 0 (zero) or greater than 255, the element
does nothing, and power flow through the element is FALSE.

ST Language
(* RCVCOM is a declared instance of RCVCOMM function block *)
RCVCOM(EN, #Port, N, DATA[]);
COUNT := RCVCOM.COUNT;

FBD Language

LD Language

IL Language
(* RCVCOM is a declared instance of RCVCOMM function block *)

OP1 : CAL RCVCOM(EN, #Port, N, DATA[])

LD RCVCOM.Count
ST COUNT

See also
Op
en
Co

www.imopc.com 310

http://www.imopc.com/

m
m
 C
los
eC
om
m

www.imopc.com 311

http://www.imopc.com/

SendComm
Operator - Performs transmitting of data through a opened port.

Inputs
EN: Enable input (TYPE : BOOL)
#PORT: Port number (TYPE : DINT)
This is comm port previously open by the ladder program.
N: (TYPE : INT)
This value indicates the number of bytes to be transmitted, may be specified as either
a register reference or as a decimal constant.
DATA[]: (TYPE : USINT[])
This is the address of the buffer containing the data to be sent. This must be specified
as a Register Type and Offset reference.

Outputs
COUNT: (TYPE : INT)
The actual number of bytes transferred to the port's internal buffer (or -1 when the
function is not active). This location must be specified as a register Type and Offset
reference.

Remarks
If the port has been successfully opened, this element sends a specified number of
bytes to the internal transmit buffer for the selected communication port.

When power is applied to the element, the Output COUNT register contains the
number of characters actually transferred to the comm port transmit buffer. If power is
not applied to the element, this register contains -1 (negative one).

Power flow through the element is FALSE until the requested number of characters
have been transferred to the comm port transmit buffer (at which time the power flow
is TRUE). It is possible that the element can not transfer all data in one program scan
time.

If the port is not open, the Transmit Element does nothing, and power flow through
the element is FALSE.

If the value contained in BYTES is greater then 255, the element does nothing and
power flow through the element is FALSE.

The Number of Bytes can be either a register references or a decimal constant. The
maximum acceptable value is 255 bytes. When using a Register Type if it contains a
value less than 0 (zero) or greater than 255, the element does nothing, and power flow
through the element is FALSE.

ST Language
(* SNDC is a declared instance of SendComm function block *)

SNDC(EN, #PORT, N, Data[]);
Count := SNDC.count;

www.imopc.com 312

http://www.imopc.com/

FBD Language

LD Language

IL Language
(* SNDC is a declared instance of SendComm function block *)

Op1 : CAL SNDC(EN, #PORT, N, Data[])

LD SNDC.Status
ST STATUS

See also
O
p
e
n
C
o
m
m

www.imopc.com 313

http://www.imopc.com/

Removable Media Operations

Removable Media Operations
Below are the standard operators that perform Removable Media Operations:

Delete
Removable
Media File
Read Removable
Media File
Read Removable
Media2
Rename
Removable
Media File
Write
Removable
Media
Write
Removable
Media2
Removable
Media
Filenames

Deletes a file on the Removable Media card
Reads a comma separated value file from the Removable Media interface
into controller register space
Reads a comma separated value file from the Removable Media interface
into controller register space
Renames a file on the Removable Media card
Writes a comma separated value file to the Removable Media interface
from controller register space
Writes a comma separated value file to the Removable Media interface
from controller register space

www.imopc.com 314

http://www.imopc.com/

Delete_RM
Operator – Perform deletion of a file on the Removable Media card.

Inputs
EN : The rung state in a LD diagram is always Boolean. Blocks are connected to the
rung with their input and output. The "EN" input is a trigger condition The block is
executed only if EN is TRUE (TYPE : BOOL)
FILENAME: (TYPE : STRING)
This is the filename to delete.

Outputs
STATUS : (TYPE : DINT)
This is a 16-bit controller registers used to show the status of the function block. See
the possible status codes in the status section below.

Remarks

1) FILENAME
The filename may be either fixed or obtained by reading from a contiguous block of
registers in the i³, and may includes sub directories (i.e. "my_data\test.csv"), Where a
fixed string is used, it may be up to 147 characters long. If the filename is obtained
from i³ registers it is still limited to 147 characters and must be terminated with a
NULL (byte containing zero).
If the filename is to come from i³ and registers and is entered as a register tag ensure
thats a percent (%) symbol appears before the register name. This is used to
differentiate between "R1234" which is a valid file name and "%R1234" which is a
register reference.
File and directory names are limited to the old DOS 8.3 convention. This is 8
characters for the name and 3 characters for an extension with a period (.) separating
them. See the Removable Media Filenames section for more filename options.

2) Status Values Returned by Removable Media Function Blocks
Value Description
0 Operation completed successfully
-1 End of file was reached before completing
-2 Function is active, waiting for operation to complete
-3 Function is waiting on another RM function to complete
-4 Function block is inactive (usually no power flow)

1 Card present but unknown format
2 No card in slot
3 Card present, but not supported
4 Card swapped before operation was complete
5 Unknown error

66 File / Path specified does not exist
73 Bad file descriptor (corrupt file)

www.imopc.com 315

http://www.imopc.com/

77 Attempt to open / rename file that is open
81 Specified file already exist
86 Function block contains illegal parameter
88 Too many open files*
92 Attempt to write failed
94 Sharing violation*
95 No disk present*
96 Directory structure corrupt
98 Incorrect data format

3) System Registers used with Removable Media
%SR175 Status - This shows the current status of the Removable Media interface.
Possible status values:
0 Removable Media Interface OK
1 Card Present but unknown format
2 No card in slot
3 Card present, but not supported
4 Card swapped before operation was complete
5 Unknown error
%SR176 Free Space - This 32-bit register shows the free space on the Removable
Media card in bytes.
%SR178 Card Capacity - This 32-bit register shows the total card capacity in bytes.

ST Language
(* DELETE is a declared instance of DELETE_RM function block *)
DELETE(EN, FILENAME);
STATUS := DELETE.STATUS;

FBD Language

LD Language
ENO/Rung Power - This function passes power once the Status returns a 0, assuming
power is still applied to the function. Should power be lost to the Rename function
before it is finished, however, the function will still complete. The block is executed
only if EN is TRUE then ENO also is TRUE. (i.e.) The "ENO" output always
represents the same status as the "EN" input. Data type is BOOL.

IL Language
(* DELETE is a declared instance of DELETE_RM function block *)
Op1: CAL DELETE(EN, FILENAME)

LD DELETE.STATUS
ST STATUS

See also

www.imopc.com 316

http://www.imopc.com/

READ_RM READ_RM2 WRITE_RM WRITE_RM2 RENAME_RM
 DELETE_RM

www.imopc.com 317

http://www.imopc.com/

Rename_RM
Operator – Perform renaming a file on the Removable Media card. The data in the
file is not changed.

Inputs
EN : (TYPE : BOOL)

The rung state in a LD diagram is always Boolean. Blocks are connected to the rung
with their input and output. The "EN" input is a trigger condition The block is
executed only if EN is TRUE.

OLDNAME: (TYPE : STRING)

This is the original filename to rename.

NEWNAME: (TYPE : STRING)

This is the new filename. This can be a constant or a controller registers and has the
same requirements as the old filename.

Outputs
STATUS : (TYPE : DINT)
This is a 16-bit controller registers used to show the status of the function block. The
first 16-bit register is a status code. See the possible status value in the status section
below.

Remarks

1) OLDNAME
The filename may be either fixed or obtained by reading from a contiguous block of
registers in the i³, and may includes sub directories (i.e. "my_data\test.csv"), Where a
fixed string is used, it may be up to 147 characters long. If the filename is obtained
from i³ registers it is still limited to 147 characters and must be terminated with a
NULL (byte containing zero).
If the filename is to come from i³ and registers and is entered as a register tag ensure
thats a percent (%) symbol appears before the register name. This is used to
differentiate between "R1234" which is a valid file name and "%R1234" which is a
register reference.

File and directory names are limited to the old DOS 8.3 convention. This is 8
characters for the name and 3 characters for an extension with a period (.) separating
them. See the Removable Media Filenames section for more filename options.

2) Status Values Returned by Removable Media Function Blocks
Value Description
0 Operation completed successfully
-1 End of file was reached before completing
-2 Function is active, waiting for operation to complete
-3 Function is waiting on another RM function to complete

www.imopc.com 318

http://www.imopc.com/

-4 Function block is inactive (usually no power flow)

1 Card present but unknown format
2 No card in slot
3 Card present, but not supported
4 Card swapped before operation was complete
5 Unknown error

66 File / Path specified does not exist
73 Bad file descriptor (corrupt file)
77 Attempt to open / rename file that is open
81 Specified file already exist
86 Function block contains illegal parameter
88 Too many open files*
92 Attempt to write failed
94 Sharing violation*
95 No disk present*
96 Directory structure corrupt
98 Incorrect data format

ST Language
(* RENAME is a declared instance of RENAME_RM function block *)

RENAME(EN, OLDNAME, NEWNAME);
STATUS := RENAME.STATUS;

FBD Language

LD Language

ENO/Rung Power - This function passes power once the Status returns a 0, assuming
power is still applied to the function. Should power be lost to the Rename function
before it is finished, however, the function will still complete. The block is executed
only if EN is TRUE then ENO also is TRUE. (i.e.) The "ENO" output always
represents the same status as the "EN" input. Data type is BOOL.

IL Language
(* RENAME is a declared instance of RENAME_RM function block *)
OP1: CAL RENAME(EN, OLDNAME, NEWNAME)

LD RENAME.Status
ST Status

See also

www.imopc.com 319

http://www.imopc.com/

READ_RM READ_RM2 WRITE_RM WRITE_RM2 RENAME_RM
 DELETE_RM

www.imopc.com 320

http://www.imopc.com/

Read_RM
Operator – Perform reading from a fixed File name on the Removable Media
interface.

Inputs
EN : Enable input (TYPE : BOOL)
#TYPE: (TYPE : DINT)
This is the type of data that is read.
FILENAME: (TYPE : STRING)
This is the fixed filename to read the values from and enter into the controller.
OFFSET : (TYPE : DINT)
This parameter defines where in the file to start reading data. This can be a constant
value or a 32-bit controller registers.
NUM: (TYPE : INT)
This determines the number of element to read. It should be a constant. Data Type is
INT.
DEST[]: (TYPE : ANY[])
This is a controller register where the read data is placed. Because each element can
require more than one 16-bit registers
(DINT, REAL, UDINT, ASCII types) and more than one element can be read at a
time this can fill a large number of registers from this starting point.
#FILETYPE : (TYPE : DINT)
This defines the extension of the file name.

Outputs
STATUS : (TYPE : DINT)
This is a 32-bit controller register used to show the status of the function block. The
first 16-bit register is a status code; see the possible status codes in the status section
below. The second 16-bit register shows the number of elements successfully read

Remarks

1) FILENAME
This is a constant. It can be up to 147 characters long that includes sub directories (i.e.
"my_data\test.csv").
File and directory names are limited to the old DOS 8.3 convention. This is 8
characters for the name and 3 characters for an extension with a period (.) separating
them. See the Removable Media Filenames section for more filename options.
String expressions must be written between single quote marks.

2) Status Values Returned by Removable Media Function Blocks
Value Description
0 Operation completed successfully
-1 End of file was reached before completing
-2 Function is active, waiting for operation to complete
-3 Function is waiting on another RM function to complete
-4 Function block is inactive (usually no power flow)

www.imopc.com 321

http://www.imopc.com/

1 Card present but unknown format
2 No card in slot
3 Card present, but not supported
4 Card swapped before operation was complete
5 Unknown error

66 File / Path specified does not exist
73 Bad file descriptor (corrupt file)
77 Attempt to open / rename file that is open
81 Specified file already exist
86 Function block contains illegal parameter
88 Too many open files*
92 Attempt to write failed
94 Sharing violation*
95 No disk present*
96 Directory structure corrupt
98 Incorrect data format

ST Language
(* RD is a declared instance of READ_RM function block *)
RD (EN, #TYPE, FILENAME, OFFSET, NUM, DEST[], #FILETYPE);
STATUS := RD.Status;

FBD Language

LD Language

IL Language
(* RD is a declared instance of READ_RM function block *)
OP1 : CAL RD(EN, #TYPE, FILENAME, OFFSET, NUM, DEST[], #FILETYPE)

LD RD.Status
ST Status

See also
READ_RM READ_RM2 WRITE_RM WRITE_RM2 RENAME_RM
 DELETE_RM

www.imopc.com 322

http://www.imopc.com/

Read_RM2
Operator – Perform reading a comma separated value file from the Removable Media
interface where the filename is obtained from i³ registers.

Inputs
EN : Enable input (TYPE : BOOL)
#TYPE: (TYPE : DINT)
This is the type of data that is read.
FILENAME: (TYPE : STRING)
This is the filename to read obtained from i³ registers.
OFFSET : (TYPE : DINT)
This parameter defines where in the file to start reading data. This can be a constant
value or a 32-bit controller registers
NUM: (TYPE : INT)
This determines the number of element to read. It should be a constant. Data Type is
INT.
DEST[]:(TYPE : ANY[])
This is a controller register where the read data is placed. Because each element can
require more than one 16-bit registers (DINT, REAL, UDINT, ASCII types) and more
than one element can be read at a time this can fill a large number of registers from
this starting point.
#FILETYPE : (TYPE : DINT)
This defines the extension of the file name.

Outputs
STATUS : (TYPE : DINT)
This is a 32-bit controller register used to show the status of the function block. The
first 16-bit register is a status code; see the possible status codes in the status section
below. The second 16-bit register shows the number of elements successfully read.

Remarks

1) FILENAME
The filename is stored in contiguous block of i³ registers and has a limit of 147
characters and must be terminated with a NULL (byte containing zero). A percent (%)
symbol before the register name is required indicate the file is in a register. This
shows that"%R1234" is a valid register reference.

File and directory names are limited to the old DOS 8.3 convention. This is 8
characters for the name and 3 characters for an extension with a period (.) separating
them. See the Removable Media Filenames section for more filename options.

Data Type is USINT / BYTE: Unsigned 8 bit Integer.

Unsigned small integer constant expressions are used valid integer values (between 0
and 255) and must be prefixed with "USINT#'.

2) Status Values Returned by Removable Media Function Blocks
Value Description

www.imopc.com 323

http://www.imopc.com/

0 Operation completed successfully
-1 End of file was reached before completing
-2 Function is active, waiting for operation to complete
-3 Function is waiting on another RM function to complete
-4 Function block is inactive (usually no power flow)

1 Card present but unknown format
2 No card in slot
3 Card present, but not supported
4 Card swapped before operation was complete
5 Unknown error

66 File / Path specified does not exist
73 Bad file descriptor (corrupt file)
77 Attempt to open / rename file that is open
81 Specified file already exist
86 Function block contains illegal parameter
88 Too many open files*
92 Attempt to write failed
94 Sharing violation*
95 No disk present*
96 Directory structure corrupt
98 Incorrect data format

ST Language
(* RD is a declared instance of READ_RM2 function block *)

RD(EN, #TYPE, FILENAME, OFFSET, NUM, DEST[], #FILETYPE);
STATUS := RD.Status;

FBD Language

LD Language

IL Language
(* RD is a declared instance of READ_RM2 function block *)

OP1 : CAL RD(EN, #TYPE, FILENAME, OFFSET, NUM, DEST[], #FILETYPE)

LD RD.Status
ST Status

See also
READ_RM READ_RM2 WRITE_RM WRITE_RM2 RENAME_RM
 DELETE_RM

www.imopc.com 324

http://www.imopc.com/

Write_RM
Operator – Perform writing a comma separated value onto a fixed File name on the
Removable Media interface.

Inputs
EN : Enable input (TYPE : BOOL)
#MODE: (TYPE : DINT)
This is the writing mode for the function.
· Create - create a new file, error if file DOES exist
· Append - add data to end of existing file, error if file does NOT exist
· Create / Append - create the file if it doesn't exist, append if the file does exist
· Overwrite - if the file exists overwrite with a new file

#TYPE: (TYPE : DINT)
This is the type of data that is written. There is no type or size information encoded in
a CSV file and it is the programmer’s responsibility to write data to a file using the
correct type.

FILENAME: (TYPE : STRING)
This is the fixed filename to write the values from the controller.

SRC[] : (TYPE : ANY i.e. DINT[], REAL[], UDINT[], ASCII[] types)
This is a controller register where the data to write is located. Because each element
can require more than one 16-bit registers (DINT, REAL, UDINT, ASCII types) and
more than one element can be written at a time this can require a large number of
registers from this starting point.

NUM: (TYPE : INT)
This determines the number of element to write it can be a constant or 16-bit
controller register.

COL/ROW: (TYPE : INT)
This defines the format for writing data to the CSV file.

#FILE TYPE: (TYPE : DINT)
This defines the extension of the file name.

#END OF ROW: (TYPE : BOOL)
Setting this option will cause the row to end at the end of this write function.

Outputs
STATUS : (TYPE : DINT)
This is a 32-bit controller register used to show the status of the function block. It
indicates the operation’s success/failure code. The first 16-bit register is a status code;
see the possible status codes in the status section below. The second 16-bit register
shows the number of elements successfully read.

Remarks

1) FILENAME

www.imopc.com 325

http://www.imopc.com/

This is a constant. It can be up to 147 characters long that includes sub directories (i.e.
"my_data\test.csv").
File and directory names are limited to the old DOS 8.3 convention. This is 8
characters for the name and 3 characters for an extension with a period (.) separating
them. See the Removable Media Filenames section for more filename options.

 2) COL/ROW
This can be a constant. When a CSV file is written to a table format it can be
viewed in a column / row format like a spreadsheet. Setting this parameter
determines the number of elements to write in a row before a new row is
started.
Setting this value to zero will disable the generation of new rows and will generate
all data as a single row.
Examples:

3 columns per row

1 2 3
4 5 6
7 8 9

5 columns per row
1 2 3 4 5
6 7 8 9 10

3) Status Values Returned by Removable Media Function Blocks
Value Description
0 Operation completed successfully
-1 End of file was reached before completing
-2 Function is active, waiting for operation to complete
-3 Function is waiting on another RM function to complete
-4 Function block is inactive (usually no power flow)

1 Card present but unknown format
2 No card in slot
3 Card present, but not supported
4 Card swapped before operation was complete
5 Unknown error

66 File / Path specified does not exist
73 Bad file descriptor (corrupt file)
77 Attempt to open / rename file that is open
81 Specified file already exist
86 Function block contains illegal parameter
88 Too many open files*
92 Attempt to write failed
94 Sharing violation*
95 No disk present*

www.imopc.com 326

http://www.imopc.com/

96 Directory structure corrupt
98 Incorrect data format

ST Language
(* WR is a declared instance of WRITE_RM function block *)

WR(EN, #MODE, #TYPE, FILENAME, SRC[], NUM, COL/ROW, # FILETYPE, #
ENDOFROW);
STATUS := WR.Status;

FBD Language

LD Language

IL Language
(* WR is a declared instance of WRITE_RM function block *)

OP1: CAL WR(EN, #MODE, #TYPE, FILENAME, SRC[], NUM, COL/ROW,
FILETYPE, # ENDOFROW)
LD WR.Status
ST Status

See also
READ_RM READ_RM2 WRITE_RM WRITE_RM2 RENAME_RM
 DELETE_RM

www.imopc.com 327

http://www.imopc.com/

Write_RM2
Operator – Perform writing a comma separated value file to the Removable Media

interface where the filename is to be obtained from iᶟ registers.

Inputs
EN : Enable input (TYPE : BOOL)
#MODE: (TYPE : DINT)
This is the writing mode for the function.
· Create - create a new file, error if file DOES exist
· Append - add data to end of existing file, error if file does NOT exist
· Create / Append - create the file if it doesn't exist, append if the file does exist
· Overwrite - if the file exists overwrite with a new file

#TYPE: (TYPE : DINT)
This is the type of data that is written. There is no type or size information encoded in
a CSV file and it is the programmer’s responsibility to write data to a file using the
correct type.

FILENAME: (TYPE : USINT)

This is the filename to write obtained from iᶟ registers.

SRC[] : (TYPE : ANY i.e. DINT[], REAL[], UDINT[], ASCII[] types)

This is a controller register where the data to write is located. Because each element
can require more than one 16-bit registers (DINT, REAL, UDINT, ASCII types) and
more than one element can be written at a time this can require a large number of
registers from this starting point.

NUM: (TYPE : INT)
This determines the number of element to write it can be a constant or 16-bit
controller register.

COL/ROW: (TYPE : INT)
This defines the format for writing data to the CSV file.

#FILE TYPE: (TYPE : DINT)
This defines the extension of the file name.

#END OF ROW: (TYPE : BOOL)
Setting this option will cause the row to end at the end of this write function.

Outputs
STATUS : (TYPE : DINT)
This is a 32-bit controller registers used to show the status of the function block. The
first 16-bit register is a status code; see the possible status codes in the status section
below. The second 16-bit register shows the number of elements successfully read.

Rename

www.imopc.com 328

http://www.imopc.com/

1) FILENAME

The filename is stored in contiguous block of iᶟ registers and has a limit of 147
characters and must be terminated with a NULL (byte containing zero). A percent (%)
symbol before the register name is required indicate the file is in a register. This
shows that"%R1234" is a valid register reference.

File and directory names are limited to the old DOS 8.3 convention. This is 8
characters for the name and 3 characters for an extension with a period (.) separating
them. See the Removable Media Filenames section for more filename options.

USINT - Unsigned Short Integer: An 8-bit unsigned value. Unsigned Short Integers
are used where the value of the data is expected to be in the range of 0 (zero) to 255.

2) COL/ROW
This can be a constant. When a CSV file is written to a table format it can be viewed
in a column / row format like a spreadsheet. Setting this parameter determines the
number of elements to write in a row before a new row is started.

3) Status Values Returned by Removable Media Function Blocks

Value Description
0 Operation completed successfully
-1 End of file was reached before completing
-2 Function is active, waiting for operation to complete
-3 Function is waiting on another RM function to complete
-4 Function block is inactive (usually no power flow)

1 Card present but unknown format
2 No card in slot
3 Card present, but not supported
4 Card swapped before operation was complete
5 Unknown error

66 File / Path specified does not exist
73 Bad file descriptor (corrupt file)
77 Attempt to open / rename file that is open
81 Specified file already exist
86 Function block contains illegal parameter
88 Too many open files*
92 Attempt to write failed
94 Sharing violation*
95 No disk present*
96 Directory structure corrupt
98 Incorrect data format

ST Language
(* WD is a declared instance of WRITE_RM2 function block *)

www.imopc.com 329

http://www.imopc.com/

WD(EN, #MODE, #TYPE, FILENAME, SRC[], NUM, COL/ROW, #FILETYPE,
#ENDOFROW);
STATUS := WD.Status;

FBD Language

LD Language

IL Language
(* WD is a declared instance of WRITE_RM2 function block *)
OP1: CAL WD(EN, #MODE, #TYPE, FILENAME, SR[]C, NUM, COL/ROW,
#FILETYPE, #ENDOFROW)

LD WD.Status
ST Status

See also
READ_RM READ_RM2 WRITE_RM WRITE_RM2 RENAME_RM
 DELETE_RM

www.imopc.com 330

http://www.imopc.com/

Copy_CF
Operator – Performs copying of a file on the Removable Media card. The data in the
file is not changed.#

Inputs
EN : The rung state in a LD diagram is always Boolean. Blocks are connected to the
rung with their input and output. The "EN" input is a trigger condition The block is
executed only if EN is TRUE (TYPE : BOOL)
Source: (TYPE: String)
This is the name of the file to be copied.
Dest: (TYPE: String)
This is the file which will be created containing the copied data

Outputs
STATUS : (TYPE : DINT)
This is a 16-bit controller registers used to show the status of the function block. See
the possible status codes in the status section below.

Remarks

1) Source & Dest
The filename may be either fixed or obtained by reading from a contiguous block of
registers in the i³, and may includes sub directories (i.e. "my_data\test.csv"), Where a
fixed string is used, it may be up to 147 characters long. If the filename is obtained
from i³ registers it is still limited to 147 characters and must be terminated with a
NULL (byte containing zero).
If the filename is to come from the i³ and registers and is entered as a register tag
ensure thats a percent (%) symbol appears before the register name. This is used to
differentiate between "R1234" which is a valid file name and "%R1234" which is a
register reference.
File and directory names are limited to the old DOS 8.3 convention. This is 8
characters for the name and 3 characters for an extension with a period (.) separating
them. See the Removable Media Filenames section for more filename options.

2) Status Values Returned by Removable Media Function Blocks

Value Description
0 Operation completed successfully
-1 End of file was reached before completing
-2 Function is active, waiting for operation to complete
-3 Function is waiting on another RM function to complete
-4 Function block is inactive (usually no power flow)

1 Card present but unknown format
2 No card in slot

www.imopc.com 331

http://www.imopc.com/

3 Card present, but not supported
4 Card swapped before operation was complete
5 Unknown error

66 File / Path specified does not exist
73 Bad file descriptor (corrupt file)
77 Attempt to open / rename file that is open
81 Specified file already exist
86 Function block contains illegal parameter
88 Too many open files*
92 Attempt to write failed
94 Sharing violation*
95 No disk present*
96 Directory structure corrupt
98 Incorrect data format

3) System Registers used with Removable Media

%SR175 Status - This shows the current status of the Removable Media interface.
Possible status values:

0 Removable Media Interface OK
1 Card Present but unknown format
2 No card in slot
3 Card present, but not supported
4 Card swapped before operation was complete
5 Unknown error

%SR176 Free Space - This 32-bit register shows the free space on the Removable
Media card in bytes.
%SR178 Card Capacity - This 32-bit register shows the total card capacity in bytes.

ST Language
CP (CP_EN,'Testfile.csv','IMO.csv');
Status := CP.Status;

FBD Language

LD Language

www.imopc.com 332

http://www.imopc.com/

EN/Rung Power - This function passes power once the Status returns a 0, assuming
power is still applied to the function. Should power be lost to the Copy function
before it is finished, however, the function will still complete. The block is executed
only if EN is TRUE. The output always represents the same status as the "EN" input.
Data type is BOOL.

IL Language
BEGIN_IL

cal C (C_Enable, 'JP.CSV', 'IMO.csv')
ld C.Status
st C_Status
END_IL

See also
READ_RM READ_RM2 WRITE_RM WRITE_RM2 RENAME_RM
 DELETE_RM

www.imopc.com 333

http://www.imopc.com/

Counter Operations

Counter Operations
Below are the standard blocks for managing counters:

Up Counter
Down Counter

Up counter
Down counter

www.imopc.com 334

http://www.imopc.com/

CTD
Function - Down counter.

Inputs
CD : BOOL Enable counting. Counter is decreased on each call when CD is TRUE
LOAD : BOOL Re-load command. Counter is set to PV when called with LOAD to
TRUE
PV : DINT Programmed maximum value

Outputs
Q : BOOL TRUE when counter is empty, i.e. when CV = 0
CV : DINTCurrent value of the counter

Remarks
The counter is empty (CV = 0) when the application starts. Counter is set to PV when
called with LOAD to TRUE. The counter does not include a pulse detection for CD
input. Use R_TRIG or F_TRIG function block for counting pulses of CD input signal.
In LD language, CD is the input rung. The output rung is the Q output.

ST Language
(* MyCounter is a declared instance of CTD function block *)
MyCounter (CD, LOAD, PV);
Q := MyCounter.Q;
CV := MyCounter.CV;

FBD Language

LD Language

IL Language
(* MyCounter is a declared instance of CTD function block *)
Op1: CAL MyCounter (CD, LOAD, PV)
 LD MyCounter.Q
 ST Q
 LD MyCounter.CV
 ST CV

See also
CTU

www.imopc.com 335

http://www.imopc.com/

CTU
Function - Up counter.

Inputs
CU : BOOL Enable counting. Counter is increased on each call when CU is TRUE
RESET : BOOL Reset command. Counter is reset to 0 when called with RESET to
TRUE
PV : DINTProgrammed maximum value

Outputs
Q : BOOLTRUE when counter is full, i.e. when CV = PV
CV : DINTCurrent value of the counter

Remarks
The counter is empty (CV = 0) when the application starts. The counter does not
include a pulse detection for CU input. Use R_TRIG or F_TRIG function block for
counting pulses of CU input signal. In LD language, CU is the input rung. The output
rung is the Q output.

ST Language
(* MyCounter is a declared instance of CTU function block *)
MyCounter (CU, RESET, PV);
Q := MyCounter.Q;
CV := MyCounter.CV;

FBD Language

LD Language

IL Language
(* MyCounter is a declared instance of CTU function block *)
Op1: CAL MyCounter (CU, RESET, PV)
 LD MyCounter.Q
 ST Q
 LD MyCounter.CV
 ST CV

See also
CTD

www.imopc.com 336

http://www.imopc.com/

Time and Date Operations

Time and Date Operations
Below are the standard functions for managing Time and Date operations:

Days of Month
Days of Week
Months of Year
Start and End Year
Time of Day

www.imopc.com 337

http://www.imopc.com/

Time and Date Operations
Days of Month | Days of Week | Months of Year | Start and End Year | Time of Day

Configuring Elements
To configure the element, Time and Date Operations assign either fixed or Register
Type and Offset (address) as input. The fixed or register values are compared with the
current RTC time in the i³.

Power Flow through the Element
When the current RTC time / day / date / month / year of i³ is between the input given,
power is passed through the element to its output, which can be used to set or clear an
indicator coil. For example:

 Element Inputs Given Power Flow

Time of Day Start time: 11:45
End time : 16:45

The power will be passed when the RTC time in
the i³ is between 11:45 and 16:45 everyday.

Days of Week Monday, Wednesday
and Friday

The power will be passed on Mondays,
Wednesdays and Fridays of every week.

Days of Month 5, 15 and 25 The power will be passed on 5th, 15th and 25th of
every month.

Months of Year January, July The power will be passed from 1st to 31st
January and 1st to 31st July of every year.

Start and End
Year

Start Year: 2007
End Year: 2009

The power will be passed from year 2007 to
2009.

Time of Day

The Time of Day element compares the current time with the start and end time
values. If the current time is between the start time and end time, power is passed. The
inputs can be fixed or can be entered using address registers.

STLanguage
Q5:=TimeOfDay(StartHour(*INT*), StartMin(*INT*), EndHour(*INT*),
EndMin(*INT*));

FBD Language

www.imopc.com 338

http://www.imopc.com/

LD Language

IL Language
LD StartHour
TimeOfDay StartMin, EndHour, EndMin
 ST Q5

Days of Week
The Days of week element compares the current day of the week with the input and
passes power when the current day is one of the inputs.

The input can be fixed or Register Type and Offset. In case of fixed input, the values
represent each day from Sunday (1) to Saturday (7). In case of register type and offset,
a 16 bit register is used for representing all days with each bit of the register
representing one day

i.e. BIT 1 - Sunday
BIT 7 – Saturday

ST Language
Q4:= DaysOfWeek(Days1); (*INT*)

FBD Language

www.imopc.com 339

http://www.imopc.com/

LD Language

IL Language

 LD Week (* load parameter*)
 DaysOfWeek (*load block*)
 ST Q2 (*store to Q1*)

Days of Month
The Days of month element compares the current date of the month with the input and
passes power when the current date is one of the inputs.

The input can be fixed or Register Type and Offset. In case of fixed input, the values
represent each date from 1 to 31st. In case of register type and offset, a 32 bit register
is used for representing all dates with each bit of the register representing one date.

i.e. BIT 1 - 1st of the month

BIT 31 - 31st of the month

ST Language
Q1:= DaysOfMonth(Days);(*UDINT*)

FBD Language

LD Language

www.imopc.com 340

http://www.imopc.com/

IL Language

 LD Days (* load parameter*)
 DaysOfMonth (*load block*)
 ST Q1 (*store to Q1*)

Months of Year
The Months of Year element compares the current month of the year with the input
and passes power when the current month is one of the inputs.

The input can be fixed or Register Type and Offset. In case of fixed input, each value
represents a month from January (1) to December (12)In case of register type and
offset, a 16 bit register is used for representing all months with each bit of the register
representing one month.

i.e. BIT 1 - January
 BIT 12 – December

ST Language
Q2:= MonthsOfYear(Months); (*INT*)

FBD Language

LD Language

IL Language
LD Months (* load parameter*)
MonthsOfYear (*load block*)
ST Q3 (*store to Q1*)

Start and End Year

www.imopc.com 341

http://www.imopc.com/

The Start and End Year element compares the current year with the inputs and passes
power when the current year is between the inputs.

The input can be constants (fixed) or register type and offsets. In case of fixed input,
start and end values can be directly entered. In case of register type and offset, a 32 bit
register is used for specifying start and end year. The higher 16 bits represent end year
and the lower 16 bits represent the start year.

ST Language
Q3:= StartEndYear(Years); (*DINT*)

FBD Language

LD Language

IL Language
 LD Year (* load parameter*)
 StartEndYear (*load block*)
 ST Q4 (*store to Q1*)

www.imopc.com 342

http://www.imopc.com/

Move Operations

Move Operations
Below are the standard operators that perform Move Operations:

Fill Block
Multiple Shift
Multiple
Rotation
Move Data
Binary
Selector

Fills a source register values to destination location
Shifts array of Elements to left or right a variable No. of elements
Rotates array of Elements to left or right a variable No. of elements
Moves a block of register values from source to destination
Select one of the inputs - 2 inputs

www.imopc.com 343

http://www.imopc.com/

FILL
Operator – This element fills a source register values from src location to destination
location.

NOTE: The Fill element operates on 16-bit data only.

WARNING: If the IN value is a signed numeric constant, it is treated as an unsigned
number when the element is configured. For example, if IN is configured as '-1', the
value '65535' is used.

Inputs
SRC – (TYPE : INT)
Source value can be either an integer constant or the value contained in another
register. For e.g. R1 is containing 123.

DST[] - (TYPE : Any[])
This is output starting register. For e.g. R10 and count is 5 then start to fill the value
as follow:
 R10 – 123
 R11 - 123
 R12 – 123
R13 - 123
and R14 value is 123.

#COUNT – (TYPE : INT)
It should be a constant value and enter in INT#5 format.
For e.g. Count value is 5.

ST Language
(* FILL1 is a declared instance of FILL function block *)
FILL1(SRC, DST[], #COUNT);

FBD Language

LD Language

www.imopc.com 344

http://www.imopc.com/

IL Language
(* FILL1 is a declared instance of FILL function block *)
Op1: CAL FILL1(SRC, DST[], #COUNT)

See also
MultiRotate MultiShift MVB

www.imopc.com 345

http://www.imopc.com/

MultiRot
Operator – This function allows an array of BITS, BYTES, WORDS, and DWORDS
to be rotated left or right a variable numbers of elements.

Inputs
Power Flow – (TYPE : BOOL)
When the input to this function block is high it completes a rotate as specified by the
parameters every scan. This function is not edge sensitive. This function always
passes power flow.
N – (TYPE : INT)
This is the number of elements to rotate. This can be a constant or a WORD variable.
The N (number) range is less than or equal to the LEN value.
SRC[] – (TYPE : ANY[])
This is the starting BIT, BYTE, WORD or DWORD for the array to be rotated. After
the data is rotated it is stored in the array of data starting at this location. BIT arrays
can start at any location (%I1, %I6, %R1.1, and % R4.7...). BYTE, WORD, and
DWORD arrays must start on a WORD boundary (%I1, %I17, %I33, %R1, and %
R2...).
#LEN – (TYPE : DINT)
This is the number of BITS, BYTES, WORDS, or DWORDS in the array. This must
be a constant number from 1 to 32767.
BIT: 1 to 32767
BYTE: 1 to 4096
WORD: 1 to 2048
DWORD: 1 to 1024
Left - This is the direction to rotate. If this input is high the data is rotated to the
left. If this input is low the data is rotated to the right.

ST Language
(* MR is a declared instance of MultiRot function block *)

MR(N, SRC[], #LEN, LEFT);

FBD Language

LD Language

En is the Enable input & Eno is the enable output. En & Eno will be the same state.
The other functionality is similar to that of a FBD.

www.imopc.com 346

http://www.imopc.com/

IL Language
(* MR is a declared instance of MultiRot function block *)

CAL MR(N, SRC[], #LEN, LEFT)

See also
MultiShift MVB FILL

www.imopc.com 347

http://www.imopc.com/

MultiShift
Operator – This function allows an array of BITS, BYTES, WORDS, and DWORDS
to be shifted left or right a variable numbers of elements.

Inputs
Power Flow – (TYPE : BOOL)
When the input to this function block is high it completes a shift as specified by the
parameters every scan. This function is not edge sensitive. This function always
passes power flow.
N - (TYPE : INT)
This is the number of elements to shift. This can be a constant or a WORD variable.
The N (number) range is less than or equal to the LEN value.
SRC[] – (TYPE : ANY[])
This is the starting BIT, BYTE, WORD or DWORD for the array to be shifted. After
the data is shifted it is stored in the array of data starting at this location. BIT arrays
can start at any location (%I1, %I6, %R1.1, and % R4.7...). BYTE, WORD, and
DWORD arrays must start on a WORD boundary (%I1, %I17, %I33, %R1, and %
R2...).
#LEN – (TYPE : DINT)
This is the number of BITS, BYTES, WORDS, or DWORDS in the array. This must
be a constant number as follows:
BIT: 1 to 32767
BYTE: 1 to 4096
WORD: 1 to 2048
DWORD: 1 to 1024
Left - (TYPE : BOOL)
This is the direction to shift. If this input is high the data is shifted to the left. If this
input is low the data is shifted to the right.
IN - (TYPE : ANY)
This is the BIT, BYTE, WORD, or DWORD to shift into the array.
@OUT - (TYPE : ANY)
This is the last BIT, BYTE, WORD or DWORD shifted out of the array.

ST Language
(* MS is a declared instance of MultiShift function block *)
MS(N, SRC[], #LEN, LEFT, @OUT, IN);

FBD Language

LD Language

www.imopc.com 348

http://www.imopc.com/

En is the Enable input & Eno is the enable output. En & Eno will be the same state.
The other functionality is similar to that of a FBD.

IL Language
(* MS is a declared instance of MultiShift function block *)
CAL MS(N, SRC[], #LEN, LEFT, IN, @OUT)

See also
MultiRot MVB FILL

www.imopc.com 349

http://www.imopc.com/

Move Block
Operator – This element moves a block of register values from source to destination
location.

Inputs
SRC[] – (TYPE : ANY[])
Source value can be either an integer constant or the value contained in another
register and assigns the dimension of register.
For e.g. Sr[0] to Sr[4] is containing 28.
DST[] – (TYPE : ANY[])
This is output register and assign with dimension.
For e.g. Dest[0] to Dest[4] and count is 5 then it moves from Sr0 – Sr4 value to Dest0
– Dest4.
COUNT – (TYPE : INT)
It should be a constant value and enter in INT#5 format.
For e.g. Count value is 5.

ST Language
(* MVB1 is a declared instance of MVB function block *)
MVB1(SRC[], DST[], #COUNT);

FBD Language

LD Language

IL Language

www.imopc.com 350

http://www.imopc.com/

(* Move is a declared instance of MVB function block *)
Op1: CAL Move(SRC[], DST[], #COUNT)

See also
MultiRotate MultiShift FILL

www.imopc.com 351

http://www.imopc.com/

SEL
Function - Select one of the inputs - 2 inputs.

Inputs
SELECT : BOOL Selection command
IN1 : DINT First input
IN2 : DINT Second input

Outputs
Q : DINT IN1 if SELECT is FALSE; IN2 if SELECT is TRUE

Truth table

SELECT Q
0 IN1
1 IN2

Remarks
In LD language, the selector command is the input rung. The output rung keeps the
same state as the input rung. In IL language, the first parameter (selector) must be
loaded in the current result before calling the function. Other inputs are operands of
the function, separated by comas.

ST Language
Q := SEL (SELECT, IN1, IN2);

FBD Language

LD Language
(* the input rung is the selector *)
(* ENO has the same value as SELECT *)

IL Language
Op1: LD SELECT
 SEL IN1, IN2
 ST Q

www.imopc.com 352

http://www.imopc.com/

PID Operations

PID Operations
Below are the standard blocks for PID operations:

Get PID Manual Mode
Status
Independent PID Loop
Independent PID with
Auto Tune
ISA PID Loop
ISA PID with Auto
Tune
Set PID Control Block
Set PID MAN

PID independent
PID independent with Auto Tuning feature
PID ISA
PID ISA with Auto Tuning feature
Sets PID registers

www.imopc.com 353

http://www.imopc.com/

GETPIDMAN
Operator: Gets the Control Output value of the PID associated with the Control block
given as Input and loads it in the Output Register.

Inputs
CB[] : Input the values of the register usage mentioned below (TYPE : INT[])

Output
Q: The control variable result of the associated PID block.

Enter a register address, or select a named register. This is the location of the Control
Variable value of the associated PID Loop going out to the process. This value may
NOT be a decimal constant.

Remarks
Register Usage
Either PID element requires an array of fifteen (15) WORD (16-bit) registers. These
will typically be of type %R. This is called the reference Array.

Registers at offset 0 through 9 must be configured before the PID element is used.

This is configured using the SETPID block.

Offset Parameter Units Range Description

0 Sample Period 10 mS 0 to 65535 The shortest time, in 10mS increments,
allowed between PID solutions.

1 Dead Band + PV Counts 0 to 32000

Defines the Upper and Lower Dead Band
limits in terms of PV counts.
Set both to 0 (zero) if no dead band is
required.
Both should be set to 0 (zero) until the
PID is tuned. A Dead Band might then
be necessary to prevent small changes in
CV values due to slight variations in
error.

2 Dead Band - PV Counts 0 to 32000

3 Proportional
Gain (Kp) Percent 0 to 327.67%

Sets the Proportional Gain (Kp) factor in
terms of percent. 100 sets unity gain
(gain of 1).

4
Derivative
Gain
(Kd)

10 mS 0 to 327.67
seconds

Entered as a time with a resolution of 10
mS.
In the PID equation this has the effect:

www.imopc.com 354

http://www.imopc.com/

Kd * delta Error / dt.

5 Integral Rate
(Ki)

Repeats
per
1000
second

0 to 32.767
repeats per
second

Entered as a number of repeats per
second -- effectively the integration rate.
In the PID equation this has the effect:
Ki * Error * dt.

6 CV Bias CV
Counts

-32000 to
+32000

Number of CV counts added to the
output before the rate and amplitude
clamps.

7 CV Upper
Clamp

CV
Counts

-32000 to
+32000

Number of CV Counts that represent the
highest and lowest value for CV. CV
Upper Clamp must be more positive the
CV Lower Clamp.

8 CV Lower
Clamp

CV
Counts

-32000 to
+32000

9 Minimum Slew
Time

Seconds of
full travel

0 to 32000
seconds to
move 32000
CV counts

Determines how fast the CV value can
change.

Each PID element must use a distinctly separate reference Array, even if the values
are identical to an exiting PID element. There can be no overlapping of PID elements.

ST Language
Q:= GETPIDMAN(CB(*INT*));

FBD Language

Ladder Language

IL Language
GETPIDMAN(CB1)
ST Q1

www.imopc.com 355

http://www.imopc.com/

See Also:
Overview_PID | Tuning_PID | Independent PID Loop | Independent PID with Auto Tune |
 ISA PID Loop | ISA PID with Auto Tune | Set PID Control Block | Set PID MAN

www.imopc.com 356

http://www.imopc.com/

PID_IND
Operator - Performs the proportional integral derivative (PID) algorithm.
Inputs
CB[] : Input the values of the register usage mentioned below. (TYPE : INT[])
SP : Process Setpoint (TYPE : INT)
Enter a register address, or select a named register. This is the location of the User-
defined Process Setpoint value. This value may NOT be a decimal constant.
PV : Process Variable (TYPE : INT)
Enter a register address or select a named register. This is the location (typically %AI)
of the Process Variable value coming in from the process. This value may NOT be a
decimal constant.
MAN EN : Manual / Auto Boolean Switch (TYPE : BOOL)
Enter a register address or select a named register that is the User-controlled Manual
Input bit. This register is a Boolean (1-bit) register, typically %T.
UP : Manual Mode up adjustment input (TYPE : BOOL)
Enter a register address or select a named register that is the User-controlled UP Input
bit. This register is a Boolean (1-bit) register, typically %T.
DOWN : Manual Mode down adjustment (TYPE : BOOL)
Enter a register address or select a named register that is the User-controlled DOWN
Input bit. This register is a Boolean (1-bit) register, typically %T.
Outputs
CV : The control variable result (TYPE : INT)
Enter a register address, or select a named register. This is the location (typically
%AQ) of the Control Variable value going out to the process. This value may NOT be
a decimal constant.

Remarks
Independent PID:
CVout = (Kp * Error) + (Ki * Error * dt) + (Kd * Derivative) + CVBias
Where:
dt = Internal elapsed time clock - previous elapsed time clock
Derivative = (Error - previous Error)/dt
--or--
Derivative = (pv - previous PV)/dt
[User selectable during configuration].
Ti = Integral time
Td = Derivative time

Register Usage
Either PID element requires an array of fifteen (15) WORD (16-bit) registers. These
will typically be of type %R. This is called the Reference Array.

Offset Parameter Units Range Description

0 Sample Period 10 mS 0 to 65535 The shortest time, in 10mS increments,
allowed between PID solutions.

www.imopc.com 357

http://www.imopc.com/

1 Dead Band + PV Counts 0 to 32000

Defines the Upper and Lower Dead Band
limits in terms of PV counts.
Set both to 0 (zero) if no dead band is
required.
Both should be set to 0 (zero) until the
PID is tuned. A Dead Band might then be
necessary to prevent small changes in CV
values due to slight variations in error.

2 Dead Band - PV Counts 0 to 32000

3
Proportional
Gain
(Kp)

Percent 0 to
327.67%

Sets the Proportional Gain (Kp) factor in
terms of percent. 100 sets unity gain
(gain of 1).

4 Derivative Gain
(Kd) 10 mS 0 to 327.67

seconds

Entered as a time with a resolution of 10
mS.
In the PID equation this has the effect:
Kd * delta Error / dt.

5 Integral Rate
(Ki)

Repeats
per
1000
second

0 to 32.767
repeats per
second

Entered as a number of repeats per
second -- effectively the integration rate.
In the PID equation this has the effect: Ki
* Error * dt.

6 CV Bias CV Counts -32000 to
+32000

Number of CV counts added to the output
before the rate and amplitude clamps.

7 CV Upper
Clamp CV Counts -32000 to

+32000

Number of CV Counts that represent the
highest and lowest value for CV. CV
Upper Clamp must be more positive the
CV Lower Clamp.

8 CV Lower
Clamp CV Counts -32000 to

+32000

9 Minimum Slew
Time

Seconds of
full travel

0 to 32000
seconds to
move 32000
CV counts

Determines how fast the CV value can
change.

10 Config Word N/A N/A Internal Use - Do not modify this
value.

11 Manual
Command CV Counts

Tracks CV
in Auto
mode; sets
CV in
Manual
Mode.

In the Automatic mode this register
tracks the CV value.
In the Manual Mode, this register
contains the value that is output to the
CV within the clamp and slew limits.

12 Internal SP Used by i³ N/A Tracks SP in

13 Internal PV Used by i³ N/A Tracks PV in

www.imopc.com 358

http://www.imopc.com/

14 Internal CV Used by i³ N/A Tracks CV out
15 Cycle Time Seconds N/A Cycle Time for PWM in Seconds

Each PID element must use a distinctly separate Reference Array, even if the values
are identical to an exiting PID element. There can be no overlapping of PID elements.

Registers at offset 0 through 9 must be configured before the PID element is used.

ST Language
(* PID1 is a declared instance of PID_IND function block *)
PID1(CB[], SP, PV, MANEN, UP, DOWN);
CV := PID1.CV;

FBD Language

LD Language

En is the Enable input & Eno is the enable output. En & Eno will be the same state.
The other functionality is similar to that of a FBD.

IL Language
(* PID1 is a declared instance of PID_IND function block *)
Op1: CAL PID1(CB[], SP, PV, MANEN, UP, DOWN)

LD PID1.CV
ST CV

www.imopc.com 359

http://www.imopc.com/

Caution: Overlapping references will result in erratic operation of the PID algorithm.

See also
Overview_PID | Tuning_PID | Independent PID Loop | Independent PID with
Auto Tune | ISA PID Loop | ISA PID with Auto Tune | Set PID Control Block |
 Set PID MAN

www.imopc.com 360

http://www.imopc.com/

PID_IND_AUTO
Operator - Performs the proportional integral derivative (PID) algorithm with auto
tuning function.

Inputs
CB[] : Input the values of the register usage mentioned below. (TYPE : INT[])
SP : Process Setpoint (TYPE : INT)
Enter a register address, or select a named register. This is the location of the User-
defined Process Setpoint value. This value may NOT be a decimal constant.
PV : Process Variable (TYPE : INT)
Enter a register address or select a named register. This is the location (typically
%AI) of the Process Variable value coming in from the process. This value may NOT
be a decimal constant.
MAN EN : Manual / Auto Boolean Switch (TYPE : BOOL)
Enter a register address or select a named register that is the User-controlled Manual
Input bit. This register is a Boolean (1-bit) register, typically %T.
UP : Manual Mode up adjustment input (TYPE : BOOL)
Enter a register address or select a named register that is the User-controlled UP Input
bit. This register is a Boolean (1-bit) register, typically %T.
DOWN : Manual Mode down adjustment (TYPE : BOOL)
Enter a register address or select a named register that is the User-controlled DOWN
Input bit. This register is a Boolean (1-bit) register, typically %T.
TUNE : Input which controls when the function should start the auto tune
process. (TYPE : BOOL)
An edge triggered boolean TUNE input starts the autotuning cycle. This input needs
to be held high during the autotuning cycle. If it is negated during the AUTOTUNE
cycle, the controller stops autotuning and reverts to the previous settings.
#FILTER : (TYPE : DINT)
This defines how far above and below the setpoint the process must go when
performing the auto tune experiment. Processes with more noise should be setup with
a high percentage.
#RESP : (TYPE : DINT)
This defines the relative speed of the PID loop once it is tuned.
#TYPE : (TYPE : DINT)
This options allows the auto tune procedure to calculate terms for PID, PI or P terms.
#TUNE2/3 : (TYPE : BOOL)
This allows the auto tuning experiment to change the output based on 2/3 the set
point. Use this option when it is not desired for the process to travel above the setpoint
during the auto tuning experiment.

Outputs
CV : The control variable result (TYPE : INT)
Enter a register address, or select a named register. This is the location (typically
%AQ) of the Control Variable value going out to the process. This value may NOT
be a decimal constant.
DONE : The control variable result (TYPE : BOOL)
This defines an output bit that is set by the function when the auto tune is complete.

Remarks

www.imopc.com 361

http://www.imopc.com/

Independent PID_Auto:
CVout = (Kp * Error) + (Ki * Error * dt) + (Kd * Derivative) + CVBias

Where:
dt = Internal elapsed time clock - previous elapsed time clock
Derivative = (Error - previous Error)/dt
--or--
Derivative = (pv - previous PV)/dt
[User selectable during configuration].
Ti = Integral time
Td = Derivative time

Register Usage
Either PID element requires an array of fifteen (15) WORD (16-bit) registers. These
will typically be of type %R. This is called the Reference Array.

Offset Parameter Units Range Description

0 Sample
Period 10 mS 0 to 65535

The shortest time, in 10mS
increments, allowed between
PID solutions.

1 Dead Band + PV Counts 0 to 32000

Defines the Upper and Lower
Dead Band limits in terms of
PV counts.
Set both to 0 (zero) if no dead
band is required.
Both should be set to 0 (zero)
until the PID is tuned. A Dead
Band might then be necessary
to prevent small changes in CV
values due to slight variations in
error.

2 Dead Band - PV Counts 0 to 32000

3 Proportional
Gain (Kp) Percent 0 to

327.67%

Sets the Proportional Gain (Kp)
factor in terms of percent. 100
sets unity gain (gain of 1).

4 Derivative
Gain (Kd) 10 mS 0 to 327.67

seconds

Entered as a time with a
resolution of 10 mS.
In the PID equation this has the
effect: Kd * delta Error / dt.

5 Integral Rate
(Ki)

Repeats
per 1000
second

0 to 32.767
repeats per
second

Entered as a number of repeats
per second -- effectively the
integration rate. In the PID
equation this has the effect: Ki *
Error * dt.

www.imopc.com 362

http://www.imopc.com/

6 CV Bias CV
Counts

-32000 to
+32000

Number of CV counts added to
the output before the rate and
amplitude clamps.

7 CV Upper
Clamp

CV
Counts

-32000 to
+32000

Number of CV Counts that
represent the highest and lowest
value for CV. CV Upper Clamp
must be more positive the CV
Lower Clamp.

8 CV Lower
Clamp

CV
Counts

-32000 to
+32000

9 Minimum
Slew Time

Seconds of
full travel

0 to 32000
seconds to
move
32000 CV
counts

Determines how fast the CV
value can change.

10 Config Word N/A N/A Internal Use - Do not modify
this value.

11 Manual
Command

CV
Counts

Tracks CV
in Auto
mode; sets
CV in
Manual
Mode.

In the Automatic mode this
register tracks the CV value.
In the Manual Mode, this
register contains the value that
is output to the CV within the
clamp and slew limits.

12 Internal SP Used by i³ N/A Tracks SP in

13 Internal PV Used by i³ N/A Tracks PV in

14 Internal CV Used by i³ N/A Tracks CV out

15 Cycle Time Seconds N/A Cycle Time for PWM in
Seconds

Each PID element must use a distinctly separate reference Array, even if the values
are identical to an exiting PID element. There can be no overlapping of PID elements.

Registers at offset 0 through 9 must be configured before the PID element is used.

ST Language
(* PID3 is a declared instance of PID_IND_Auto function block *)
PID3(CB[], SP, PV, MANEN, UP, DOWN, TUNE, #FILTER, #RESP, #TYPE,
#TUNE2/3);
CV := PID3.CV ;
Done :=PID3.Done;

FBD Language

www.imopc.com 363

http://www.imopc.com/

LD Language
En is the Enable input & Eno is the enable output. En & Eno will be the same state.
The other functionality is similar to that of a FBD.

LT Language
(* PID3 is a declared instance of PID_IND_Auto function block *)
Op1: CAL PID3(CB[], SP, PV, MANEN, UP, DOWN, TUNE, #FILTER, #RESP,
#TYPE, #TUNE2/3)

LD PID3.CV
ST CV
LD PID3.Done
ST Done

Caution: Overlapping references will result in erratic operation of the PID algorithm.

See also
Overview_PID | Tuning_PID | Independent PID Loop | Independent PID with
Auto Tune | ISA PID Loop | ISA PID with Auto Tune | Set PID Control Block |
 Set PID MAN

www.imopc.com 364

http://www.imopc.com/

PID_ISA
Operator - Performs the proportional integral derivative (PID) algorithm.

Inputs
CB[] : Input the values of the register usage mentioned below. (TYPE : INT[])
SP : Process Setpoint (TYPE : INT)
Enter a register address, or select a named register. This is the location of the User-
defined Process Setpoint value. This value may NOT be a decimal constant.
PV : Process Variable (TYPE : INT)
Enter a register address or select a named register. This is the location (typically
%AI) of the Process Variable value coming in from the process. This value may
NOT be a decimal constant.
MAN EN : Manual / Auto Boolean Switch (TYPE : BOOL)
Enter a register address or select a named register that is the User-controlled Manual
Input bit. This register is a Boolean (1-bit) register, typically %T.
UP : Manual Mode up adjustment input (TYPE : BOOL)
Enter a register address or select a named register that is the User-controlled UP Input
bit. This register is a Boolean (1-bit) register, typically %T.
DOWN : Manual Mode down adjustment (TYPE : BOOL)
Enter a register address or select a named register that is the User-controlled DOWN
Input bit. This register is a Boolean (1-bit) register, typically %T.

Outputs
CV : The control variable result (TYPE : INT)
Enter a register address, or select a named register. This is the location (typically
%AQ) of the Control Variable value going out to the process. This value may NOT
be a decimal constant.

Remarks
ISA PID :
CVout = Kp * (Error + (Error * dt / Ti) + (Td * Derivative)) + CVBias
 Where:
dt = Internal elapsed time clock - previous elapsed time clock
Derivative = (Error - previous Error)/dt
--or--
Derivative = (pv - previous PV)/dt
[User selectable during configuration].
Ti = Integral time
Td = Derivative time

Register Usage
Either PID element requires an array of fifteen (15) WORD (16-bit) registers. These
will typically be of type %R. This is called the Reference Array.
Offset Parameter Units Range Description

0 Sample
Period 10 mS 0 to 65535 The shortest time, in 10mS increments,

allowed between PID solutions.

www.imopc.com 365

http://www.imopc.com/

1 Dead Band + PV Counts 0 to 32000

Defines the Upper and Lower Dead Band
limits in terms of PV counts.
Set both to 0 (zero) if no dead band is
required.
Both should be set to 0 (zero) until the
PID is tuned. A Dead Band might then be
necessary to prevent small changes in CV
values due to slight variations in error.

2 Dead Band - PV Counts 0 to 32000

3
Proportional
Gain
(Kp)

Percent 0 to 327.67%
Sets the Proportional Gain (Kp) factor in
terms of percent. 100 sets unity gain
(gain of 1).

4
Derivative
Gain
(Kd)

10 mS 0 to 327.67
seconds

Entered as a time with a resolution of 10
mS.
In the PID equation this has the effect:
Kd * delta Error / dt.

5 Integral Rate
(Ki)

Repeats per
1000
second

0 to 32.767
repeats per
second

Entered as a number of repeats per
second -- effectively the integration rate.
In the PID equation this has the effect: Ki
* Error * dt.

6 CV Bias CV Counts -32000 to
+32000

Number of CV counts added to the
output before the rate and amplitude
clamps.

7 CV Upper
Clamp CV Counts -32000 to

+32000

Number of CV Counts that represent the
highest and lowest value for CV. CV
Upper Clamp must be more positive the
CV Lower Clamp.

8 CV Lower
Clamp CV Counts -32000 to

+32000

9
Minimum
Slew
Time

Seconds of
full travel

0 to 32000
seconds to
move 32000
CV counts

Determines how fast the CV value can
change.

10 Config Word N/A N/A Internal Use - Do not modify this
value.

11 Manual
Command CV Counts

Tracks CV in
Auto mode;
sets CV in
Manual Mode.

In the Automatic mode this register
tracks the CV value.
In the Manual Mode, this register
contains the value that is output to the
CV within the clamp and slew limits.

www.imopc.com 366

http://www.imopc.com/

12 Internal SP Used by i³ N/A Tracks SP in

13 Internal PV Used by i³ N/A Tracks PV in

14 Internal CV Used by i³ N/A Tracks CV out

15 Cycle Time Seconds N/A Cycle Time for PWM in Seconds

Each PID element must use a distinctly separate reference Array, even if the values
are identical to an exiting PID element. There can be no overlapping of PID elements.

Registers at offset 0 through 9 must be configured before the PID element is used.

ST Language
(* PID2 is a declared instance of PID_ISA function block *)
PID2(CB[], SP, PV, MANEN, UP, DOWN);
CV := PID2.CV;

FBD Language

LD Language

www.imopc.com 367

http://www.imopc.com/

En is the Enable input & Eno is the enable output. En & Eno will be the same state.
The other functionality is similar to that of a FBD.

IL Language
(* PID2 is a declared instance of PID_ISA function block *)
Op1: CAL PID2(CB[], SP, PV, MANEN, UP, DOWN)

LD PID2.CV
ST CV

Caution: Overlapping references will result in erratic operation of the PID algorithm.

See also
Overview_PID | Tuning_PID | Independent PID Loop | Independent PID with
Auto Tune | ISA PID Loop | ISA PID with Auto Tune | Set PID Control Block |
 Set PID MAN

www.imopc.com 368

http://www.imopc.com/

PID_ISA_AUTO
Operator - Performs the proportional integral derivative (PID) ISA algorithm with
auto tuning function.

Inputs
CB[] : Input the values of the register usage mentioned below. (TYPE : INT[])

SP : Process Setpoint (TYPE : INT)
Enter a register address, or select a named register. This is the location of the User-
defined Process Setpoint value. This value may NOT be a decimal constant.

PV : Process Variable (TYPE : INT)
Enter a register address or select a named register. This is the location (typically
%AI) of the Process Variable value coming in from the process. This value may NOT
be a decimal constant.

MAN EN : Manual / Auto Boolean Switch (TYPE : BOOL)
Enter a register address or select a named register that is the User-controlled Manual
Input bit. This register is a Boolean (1-bit) register, typically %T.

UP : Manual Mode up adjustment input (TYPE : BOOL)
Enter a register address or select a named register that is the User-controlled UP Input
bit. This register is a Boolean (1-bit) register, typically %T.

DOWN : Manual Mode down adjustment (TYPE : BOOL)
Enter a register address or select a named register that is the User-controlled DOWN
Input bit. This register is a Boolean (1-bit) register, typically %T.

TUNE : Input which controls when the function should start the auto tune process.
(TYPE : BOOL)
An edge triggered boolean TUNE input starts the autotuning cycle. This input needs
to be held high during the autotuning cycle. If it is negated during the AUTOTUNE
cycle, the controller stops autotuning and reverts to the previous settings.

#FILTER : (TYPE : DINT)
This defines how far above and below the setpoint the process must go when
performing the auto tune experiment. Processes with more noise should be setup with
a high percentage.

#RESP : (TYPE : DINT)
This defines the relative speed of the PID loop once it is tuned.

#TYPE : (TYPE : DINT)
This options allows the auto tune procedure to calculate terms for PID, PI or P terms.

#TUNE2/3 : (TYPE : BOOL)
This allows the auto tuning experiment to change the output based on 2/3 the set
point. Use this option when it is not desired for the process to travel above the setpoint
during the auto tuning experiment.

www.imopc.com 369

http://www.imopc.com/

Outputs
CV : The control variable result (TYPE : INT)
Enter a register address, or select a named register. This is the location (typically
%AQ) of the Control Variable value going out to the process. This value may NOT
be a decimal constant.

DONE : The control variable result (TYPE : BOOL)
This defines an output bit that is set by the function when the auto tune is complete.

Remarks
ISA PID_Auto :
CVout = Kp * (Error + (Error * dt / Ti) + (Td * Derivative)) + CVBias
 Where:
dt = Internal elapsed time clock - previous elapsed time clock
Derivative = (Error - previous Error)/dt
--or--
Derivative = (pv - previous PV)/dt
[User selectable during configuration].
Ti = Integral time
Td = Derivative time
Register Usage
Either PID element requires an array of fifteen (15) WORD (16-bit) registers. These
will typically be of type %R. This is called the Reference Array.

Offset Parameter Units Range Description

0 Sample Period 10 mS 0 to 65535 The shortest time, in 10mS increments,
allowed between PID solutions.

1 Dead Band + PV Counts 0 to 32000

Defines the Upper and Lower Dead Band
limits in terms of PV counts.
Set both to 0 (zero) if no dead band is
required.
Both should be set to 0 (zero) until the
PID is tuned. A Dead Band might then be
necessary to prevent small changes in CV
values due to slight variations in error.

2 Dead Band - PV Counts 0 to 32000

3 Proportional
Gain (Kp) Percent 0 to 327.67%

Sets the Proportional Gain (Kp) factor in
terms of percent. 100 sets unity gain (gain
of 1).

4 Derivative
Gain (Kd) 10 mS 0 to 327.67

seconds

Entered as a time with a resolution of 10
mS.
In the PID equation this has the effect: Kd
* delta Error / dt.

www.imopc.com 370

http://www.imopc.com/

5 Integral Rate
(Ki)

Repeats per
1000
second

0 to 32.767
repeats per
second

Entered as a number of repeats per second
-- effectively the integration rate. In the
PID equation this has the effect: Ki *
Error * dt.

6 CV Bias CV Counts -32000 to
+32000

Number of CV counts added to the output
before the rate and amplitude clamps.

7 CV Upper
Clamp CV Counts -32000 to

+32000

Number of CV Counts that represent the
highest and lowest value for CV. CV
Upper Clamp must be more positive the
CV Lower Clamp.

8 CV Lower
Clamp CV Counts -32000 to

+32000

9
Minimum
Slew
Time

Seconds of
full travel

0 to 32000
seconds to
move 32000
CV counts

Determines how fast the CV value can
change.

10 Config Word N/A N/A Internal Use - Do not modify this value.

11 Manual
Command CV Counts

Tracks CV in
Auto mode;
sets CV in
Manual
Mode.

In the Automatic mode this register tracks
the CV value.
In the Manual Mode, this register contains
the value that is output to the CV within
the clamp and slew limits.

12 Internal SP Used by i³ N/A Tracks SP in

13 Internal PV Used by i³ N/A Tracks PV in

14 Internal CV Used by i³ N/A Tracks CV out

15 Cycle Time Seconds N/A Cycle Time for PWM in Seconds

Each PID element must use a distinctly separate Reference Array, even if the values
are identical to an exiting PID element.

There can be no overlapping of PID elements.

Registers at offset 0 through 9 must be configured before the PID element is used.

ST Language
(* PID4 is a declared instance of PID_ISA_Auto function block *)
PID4(CB[], SP, PV, MANEN, UP, DOWN, TUNE, #FILTER, #RESP, #TYPE,
#TUNE2/3);

www.imopc.com 371

http://www.imopc.com/

CV := PID4.CV;
DONE := PID4.Done;

FBD Language

LD Language
En is the Enable input & Eno is the enable output. En & Eno will be the same state.
The other functionality is similar to that of a FBD.

IL Language
(* PID4 is a declared instance of PID_ISA_Auto function block *)
Op1: CAL PID4(CB[], SP, PV, MANEN, UP, DOWN, TUNE, #FILTER, #RESP,
#TYPE, #TUNE2/3)

LD PID4.CV
ST CV
LD PID4.Done
ST DONE

Caution: Overlapping references will result in erratic operation of the PID algorithm.

See also
Overview_PID | Tuning_PID | Independent PID Loop | Independent PID with
Auto Tune | ISA PID Loop | ISA PID with Auto Tune | Set PID Control Block |
 Set PID MAN

www.imopc.com 372

http://www.imopc.com/

SET_PID
Operator - Performs the setting for PID Registers.

Inputs
CB[] : Input the values of the register usage mentioned below (TYPE : INT[])
PERIOD : Sample Period (TYPE : INT)
DEADBAND + : Dead Band + (TYPE : INT)
Defines the Upper Dead Band limits in terms of PV counts.
Set to 0 (zero) if no dead band is required.
DEADBAND - : Dead Band - (TYPE : INT)
Defines the Upper Dead Band limits in terms of PV counts.
Set to 0 (zero) if no dead band is required.
Both Deadbands be set to 0 (zero) until the PID is tuned. A Dead Band might then be
necessary to prevent small changes in CV values due to slight variations in error.
Kp : Proportional Gain (TYPE : INT)
Sets the Proportional Gain (Kp) factor in terms of percent.
100 sets unity gain (gain of 1).
Kd : Derivative Gain (TYPE : INT)
Entered as a time with a resolution of 10 mS.
In the PID equation this has the effect: Kd * delta Error / dt.
Ki : Integral Rate (TYPE : INT)
Entered as a number of repeats per second -- effectively the integration rate. In the
PID equation this has the effect: Ki * Error * dt.
CVBias : CV Bias (TYPE : INT)
Number of CV counts added to the output before the rate and amplitude clamps.
CVUpClamp : CV Upper Clamp (TYPE : INT)
Number of CV Counts that represent the highest value for CV. CV Upper Clamp must
be more positive the CV Lower Clamp.
CVDnClamp : CV Down Clamp (TYPE : INT)
Number of CV Counts that represent the lowest value for CV. CV Upper Clamp must
be more positive the CV Lower Clamp.
MinSlew : Minimum Slew Time (TYPE : INT)
Determines how fast the CV value can change.
ErrAction : Error Action (TYPE : BOOL)
DAction: (TYPE : BOOL)
OutPol: (TYPE : BOOL)
Dsense: (TYPE : BOOL)

Remarks
Register Usage
Either PID element requires an array of fifteen (15) WORD (16-bit) registers. These
will typically be of type %R. This is called the reference Array.

Registers at offset 0 through 9 must be configured before the PID element is used.

This is configured using the SetPID block.

Offset Parameter Units Range Description
0 Sample Period 10 mS 0 to 65535 The shortest time, in 10mS increments,

www.imopc.com 373

http://www.imopc.com/

allowed between PID solutions.

1 Dead Band + PV Counts 0 to 32000

Defines the Upper and Lower Dead
Band limits in terms of PV counts.
Set both to 0 (zero) if no dead band is
required.
Both should be set to 0 (zero) until the
PID is tuned. A Dead Band might then
be necessary to prevent small changes in
CV values due to slight variations in
error.

2 Dead Band - PV Counts 0 to 32000

3 Proportional
Gain (Kp) Percent 0 to 327.67%

Sets the Proportional Gain (Kp) factor in
terms of percent. 100 sets unity gain
(gain of 1).

4
Derivative
Gain
(Kd)

10 mS 0 to 327.67
seconds

Entered as a time with a resolution of 10
mS.
In the PID equation this has the effect:
Kd * delta Error / dt.

5 Integral Rate
(Ki)

Repeats
per
1000
second

0 to 32.767
repeats per
second

Entered as a number of repeats per
second -- effectively the integration rate.
In the PID equation this has the effect:
Ki * Error * dt.

6 CV Bias CV
Counts

-32000 to
+32000

Number of CV counts added to the
output before the rate and amplitude
clamps.

7 CV Upper
Clamp

CV
Counts

-32000 to
+32000

Number of CV Counts that represent the
highest and lowest value for CV. CV
Upper Clamp must be more positive the
CV Lower Clamp.

8 CV Lower
Clamp

CV
Counts

-32000 to
+32000

9 Minimum Slew
Time

Seconds of
full travel

0 to 32000
seconds to
move 32000
CV counts

Determines how fast the CV value can
change.

Each PID element must use a distinctly separate reference Array, even if the values
are identical to an exiting PID element. There can be no overlapping of PID elements.

ST Language
(* SETPID1 is a declared instance of SetPID function block *)
SetPID1(CB[], Period, DeadBand +, Deadband-, Kp, Kd, Ki, CVBias, CVUpClamp,
CVDnClamp, MinSlew, ErrAction, DAction, Outpol, Dsense);

www.imopc.com 374

http://www.imopc.com/

FBD Language

LD Language
En is the Enable input & Eno is the enable output. En & Eno will be the same state.
The other functionality is similar to that of a FBD.

IL Language
(* SETPID1 is a declared instance of SetPID function block *)
Op1: CAL SetPID1(CB[], Period, DeadBand+, Deadband-, Kp, Kd, Ki, CVBias,
CVUpClamp, CVDnClamp, MinSlew, ErrAction, DAction, Outpol, Dsense)
Caution: Overlapping references will result in erratic operation of the PID algorithm.

See also
Overview_PID | Tuning_PID | Independent PID Loop | Independent PID with
Auto Tune | ISA PID Loop | ISA PID with Auto Tune | Set PID Control Block |
 Set PID MAN

www.imopc.com 375

http://www.imopc.com/

SETPID_MAN
Operator: Sets in Manual mode, the PID associated with the Control block with the
Input to this block as Control Output value.

Inputs
CB[]: Input the values of the register usage mentioned below (TYPE : INT[])
IN: Input value that will be fed to the Control Variable as Manual Output (TYPE:
INT)

Output
OK: Block execution indicator, it goes high if the block has been executed
successfully.

Remarks
Register Usage
Either PID element requires an array of fifteen (15) WORD (16-bit) registers. These
will typically be of type %R. This is called the reference Array.

Registers at offset 0 through 9 must be configured before the PID element is used.

This is configured using the SETPID block.

Offset Parameter Units Range Description

0 Sample Period 10 mS 0 to 65535 The shortest time, in 10mS increments,
allowed between PID solutions.

1 Dead Band + PV Counts 0 to 32000

Defines the Upper and Lower Dead Band
limits in terms of PV counts.
Set both to 0 (zero) if no dead band is
required.
Both should be set to 0 (zero) until the
PID is tuned. A Dead Band might then
be necessary to prevent small changes in
CV values due to slight variations in
error.

2 Dead Band - PV Counts 0 to 32000

3 Proportional
Gain (Kp) Percent 0 to 327.67%

Sets the Proportional Gain (Kp) factor in
terms of percent. 100 sets unity gain
(gain of 1).

4
Derivative
Gain
(Kd)

10 mS 0 to 327.67
seconds

Entered as a time with a resolution of 10
mS.
In the PID equation this has the effect:
Kd * delta Error / dt.

www.imopc.com 376

http://www.imopc.com/

5 Integral Rate
(Ki)

Repeats
per
1000
second

0 to 32.767
repeats per
second

Entered as a number of repeats per
second -- effectively the integration rate.
In the PID equation this has the effect:
Ki * Error * dt.

6 CV Bias CV
Counts

-32000 to
+32000

Number of CV counts added to the
output before the rate and amplitude
clamps.

7 CV Upper
Clamp

CV
Counts

-32000 to
+32000

Number of CV Counts that represent the
highest and lowest value for CV. CV
Upper Clamp must be more positive the
CV Lower Clamp.

8 CV Lower
Clamp

CV
Counts

-32000 to
+32000

9 Minimum Slew
Time

Seconds of
full travel

0 to 32000
seconds to
move 32000
CV counts

Determines how fast the CV value can
change.

Each PID element must use a distinctly separate reference Array, even if the values
are identical to an exiting PID element. There can be no overlapping of PID elements.

ST Language
SETPIDMAN(CB, IN);
OK := SETPIDMAN. OK;

FBD Language

Ladder Language

IL Language
OP1: CAL IN;
LD SETPIDMAN(CB)
ST Q

See Also:
Overview_PID | Tuning_PID | Independent PID Loop | Independent PID with
Auto Tune | ISA PID Loop | ISA PID with Auto Tune | Set PID Control Block |
 Set PID MAN

www.imopc.com 377

http://www.imopc.com/

Network Operations

Network Operations
Below are the standard operators and functions that manage character strings:

Get N Network
Words
Put N Network
Words
Put Network
Heartbeat
Get Network
Heart Beat
Put N Network
Words
Get Remote
Digital IO
Put Remote
Analog IO
Put Remote
Digital IO
Get Remote
Analog IO

Copies global data from any device on the network to into any set of
registers
Sends global data using multiple networks IDs based on SEND trigger
input
Transmit a heartbeat iCAN message indicating it is on-line and operating
normally
Detects network heartbeat from another device
Sends global data using multiple networks IDs
Receives data from a remote I/O function block and places the received
data in a set of registers specified
Receives data from a remote I/O function block and places the received
data in a set of registers specified
Sending data to a remote I/O function block
Sending data to a remote I/O function block

www.imopc.com 378

http://www.imopc.com/

Net Get Heartbeat
This function allows the detection of a network heartbeat from another device. This
function does not generate any network traffic. This function works only with iCAN
networks. This function will not pass power flow if the ID is not in the legal range or
if the device being monitored does not send a heartbeat message within the timeout
defined by PT.

Inputs
EN – (TYPE: BOOL)
The "EN" input is a condition. If EN is TRUE State then ENO is same.
ID – (TYPE: INT)
This is a register or constant defining the ID of the device to monitor for a heartbeat.
#PT – (TYPE: INT)
This is the maximum amount of time to wait for the heartbeat from the monitored
device. This timeout should be greater than the rate the device is sending heartbeat
messages. Depending on network traffic and scan rates the GET timeout should be 10
to 1000 milliseconds greater than the PUT. This has a range of 1 to 6553 milliseconds.

Outputs
Status – (TYPE: INT)
This register is currently used for internal record keeping. Do not allow other
functions to write to this register.
ENO – (TYPE: BOOL)
ENO is equal to EN

ST Language
(* NGHB is a declared instance of NetGetHB function block *)

NGHB(EN, ID, #PT);
ENO := NGHB.ENO;
STATUS := NGHB.Status;

FBD Language

LD Language

www.imopc.com 379

http://www.imopc.com/

IL Language
(* NGHB is a declared instance of NetGetHB function block *)

Op1: CAL NGHB(EN, ID, #PT)
LD NGHB.ENO
ST ENO
LD NGHB.STATUS
ST STATUS

See also
NetGetW NetGetRemoteIO_A NetGetRemoteIO_D

www.imopc.com 380

http://www.imopc.com/

Net Get Remote I/O Function Block (For Analog)
Operator - This function handles receiving data from a remote I/O function block and
places the received data in a set of registers specified by the user. This function passes
power flow if the function is actively receiving data / heartbeat messages from the
remote I/O device. This function stops passing power flow if it has not received data /
heartbeat messages from the remote I/O device for 2000 milliseconds.
A remote I/O device consists of an iCAN device such as SmartStix modules that
transmit global data and receive directed network data.
Inputs
ID – (TYPE: INT)
This is the network ID of the remote I/O from which to receive data. This can be a
constant from 1 to 253 or can be a 16-bit register.
DST[] – (TYPE: INT[])
This is the location to start placing received data from the remote I/O device. The
number of registers used is defined by the "#N" parameter (see below).
#N – (TYPE: INT)
This is the number of words to receive from the remote I/O device. Typically for
digital devices a 1 to 16 point module requires 1 word of data, a 17-32-point module
requires 2 words.

Outputs
Status – (TYPE: INT)
This 16-bit register is used internally. It should be not be written by any other function
block. Use the power flow from this function for the pass/fail status.

ST Language
(* NGRIA is a declared instance of NetGetRemoteIO_A function block *)

NGRIA(ID, DST[], #N);
STATUS := NGRIA.Status;

FBD Language

LD Language

www.imopc.com 381

http://www.imopc.com/

IL Language
(* NGRIA is a declared instance of NetGetRemoteIO_A function block *)

Op1: CAL NGRIA(ID, DST[], #N)

LD NGRIA.Status
ST STATUS

See also
NetGetW NetGetHB NetGetRemoteIO_D

www.imopc.com 382

http://www.imopc.com/

Net Get Remote I/O Function Block (For Digital)
Operator - This function handles receiving data from a remote I/O function block and
places the received data in a set of registers specified by the user. This function passes
power flow if the function is actively receiving data / heartbeat messages from the
remote I/O device. This function stops passing power flow if it has not received data /
heartbeat messages from the remote I/O device for 2000 milliseconds.
A remote I/O device consists of an iCAN device such as SmartStix modules that
transmit global data and receive directed network data.

Inputs
ID – (TYPE: INT)
This is the network ID of the remote I/O from which to receive data. This can be a
constant from 1 to 253 or can be a 16-bit register.
DST[] – (TYPE: INT[])
This is the location to start placing received data from the remote I/O device. The
number of registers used is defined by the "#N" parameter (see below).
#N – (TYPE: INT)
This is the number of words to receive from the remote I/O device. Typically for
digital devices a 1 to 16 point module requires 1 word of data, a 17-32-point module
requires 2 words.

Outputs
Status – (TYPE: INT)
This 16-bit register is used internally. It should be not be written by any other function
block. Use the power flow from this function for the pass/fail status.

ST Language
(* NGRID is a declared instance of NetGetRemoteIO_D function block *)

NGRID(ID, DST[], #N);
STATUS := NGRID.Status;

FBD Language

LD Language

www.imopc.com 383

http://www.imopc.com/

IL Language
(* NGRID is a declared instance of NetGetRemoteIO_D function block *)

Op1: CAL NGRID(ID, DST[], #N)
LD NGRID.Status
ST STATUS

See also
NetGetW NetGetHB NetGetRemoteIO_A

www.imopc.com 384

http://www.imopc.com/

Net Get Words
Operator - This element allows global data from any device on the network to be
copied into any set of registers. If the device defined by the source ID has not
transmitted data this function block will not pass power flow and will send a request
for the data to be sent. Once the requested data has been received, power flow from
this function block will turn on.

This function works with either iCAN or DeviceNet networks.

Inputs
ID – (TYPE: INT)
This register or constant defines the source node for the global data. If the ID is not
valid, the function will do nothing and will not pass power.
@SRC – (TYPE: INT, BOOL)
This defines the starting point for the requested global data. This can be a %AQG or
%QG registers. Note that %QG registers must be on a word boundary (1, 17, 33...).
This is a network register, a register assigned and produced by the transmitting ID.
DST[] – (TYPE: INT[], BOOL[])
This defines the starting register for the destination of the data. This is a register in the
local controller.
#N – (TYPE: INT)
 This defines the number of words to get from the source ID. The valid range is 1 to
32.

ST Language
(* NGW is a declared instance of NetGetW function block *)

NGW (ID, @SRC, DST[], #N);

FBD Language

LD Language

www.imopc.com 385

http://www.imopc.com/

IL Language
(* NGW is a declared instance of NetGetW function block *)

Op1: CAL NGW (ID, @SRC, DST[], #N)

See also
NetGetHB NetGetRemoteIO_A NetGetRemoteIO_D

www.imopc.com 386

http://www.imopc.com/

Net Put Heartbeat
This function allows a device to transmit a heartbeat iCAN message at a given rate to
indicate to other devices it is on-line and operating normally. This function does
generate network traffic. The message generated normally does not affect bandwidth,
but if many devices send heartbeat messages frequently it may cause reduction in
bandwidth.

This function will not pass power flow if the ID is not in the legal range.

This function works only with iCAN networks.

Inputs
EN – (TYPE: BOOL)
The "EN" input is a condition. If EN is TRUE State then ENO is same.
ID – (TYPE: INT)
This register or constant is usually the primary network ID of the device (%SR29), but
can be in the range defined by the primary network ID and the total number of IDs
assigned to this device.
#PT – (TYPE: INT)
 This is how often in milliseconds to send the heartbeat message. This has a range of 1
to 6553.

Outputs
Status – (TYPE: INT)
This register is currently used for internal record keeping. Do not allow other function
to write to this register.
ENO – (TYPE: BOOL)

ENO is equal to EN

ST Language
(* NPHB is a declared instance of NetPutHB function block *)

NPHB(EN, ID, #PT);
ENO := NPHB.ENO;
STATUS := NPHB.Status;

FBD Language

LD Language

www.imopc.com 387

http://www.imopc.com/

IL Language
(* NPHB is a declared instance of NetPutHB function block *)

Op1: CAL NPHB(EN, ID, #PT)

LD NPHB.ENO
ST ENO
LD NPHB.STATUS
ST STATUS

See also
NetPutW NetPutWex NetPutRemoteIO_A NetPutRemoteIO_D

www.imopc.com 388

http://www.imopc.com/

Net Put Remote I/O Function Block (For Analog)
Operator - This function handles sending data to a remote I/O function block and gets
the sent data from a set of registers specified by the user. This function passes power
flow if the remote I/O device is function normally. This function does not pass power
flow if the remote I/O device has not sent a heartbeat in 2000 milliseconds. This
function sends heartbeat messages to the output device every 1000 milliseconds. The
default remote I/O operation is to expect heartbeat messages at least every 2000
milliseconds otherwise the outputs are turned off (or their configured default state).
Data is normally transmitted on change of state, if the remote I/O device loses power,
the I/O state is also sent when it resumes operation. A remote I/O device consists of a
iCAN device such as SmartStix modules that transmit global data and receive directed
network data.

Inputs
ID – (TYPE: INT)
This is the network ID of the remote I/O to direct the sent data. This can be a constant
from 1 to 253 or can be a 16-bit register.
SRC[] – (TYPE: INT[])
This is the starting location to get data to send to the remote I/O device. When this
data changes state, it is sent to the remote I/O device. The number of registers used is
defined by the "#N" parameter (see below).
#N – (TYPE: INT)
This is the number of words to send to the remote I/O device. Typically for digital
devices a 1 to 16 point module requires 1 word of data, a 17-32-point module requires
2 words.

Outputs
Status – (TYEP: INT)
This 16-bit register is used internally. It should be not be written by any other function
block.
Bit 1-12 - reserved or internal use only
Bit 13 - Remote I/O OK and in sync with supplied data
Bit 14 - the Remote I/O detected a heartbeat error
Bit 15 - the Remote I/O has just powered up
Bit 16 - the function is forcing a send (unit just power cycled or first scan)

ST Language
(* NPRIA is a declared instance of NetPutRemoteIO_A function block *)

NPRIA(ID, SRC[], #N);
STATUS := NPRIA.Status;

FBD Language

www.imopc.com 389

http://www.imopc.com/

LD Language

IL Language
(* NPRIA is a declared instance of NetPutRemoteIO_A function block *)

Op1: CAL NPRIA(ID, SRC[], #N)
LD NPRIA.STATUS
ST STATUS

See also
NetPutW NetPutWex NetPutHB NetPutRemoteIO_D

www.imopc.com 390

http://www.imopc.com/

Net Put Remote I/O Function Block (For Digital)
Operator - This function handles sending data to a remote I/O function block and gets
the sent data from a set of registers specified by the user. This function passes power
flow if the remote I/O device is function normally. This function does not pass power
flow if the remote I/O device has not sent a heartbeat in 2000 milliseconds. This
function sends heartbeat messages to the output device every 1000 milliseconds. The
default remote I/O operation is to expect heartbeat messages at least every 2000
milliseconds otherwise the outputs are turned off (or their configured default state).
Data is normally transmitted on change of state, if the remote I/O device loses power,
the I/O state is also sent when it resumes operation. A remote I/O device consists of a
iCAN device such as SmartStix modules that transmit global data and receive directed
network data.

Inputs
ID – (TYPE: INT)
This is the network ID of the remote I/O to direct the sent data. This can be a constant
from 1 to 253 or can be a 16-bit register.
SRC[] – (TYPE: INT[], BOOL[])
This is the starting location to get data to send to the remote I/O device. When this
data changes state, it is sent to the remote I/O device. The number of registers used is
defined by the "# N" parameter (see below).
N – (TYPE: INT)
This is the number of words to send to the remote I/O device. Typically for digital
devices a 1 to 16 point module requires 1 word of data, a 17-32-point module requires
2 words.

Outputs
Status – (TYPE: INT)
This 16-bit register is used internally. It should be not be written by any other function
block.
Bit 1-12 - reserved or internal use only
Bit 13 - Remote I/O OK and in sync with supplied data
Bit 14 - the Remote I/O detected a heartbeat error
Bit 15 - the Remote I/O has just powered up
Bit 16 - the function is forcing a send (unit just power cycled or first scan)

ST Language
(* NPRID is a declared instance of NetPutRemoteIO_D function block *)

NPRID(ID, SRC[], #N);
STATUS := NPRID.Status;

FBD Language

www.imopc.com 391

http://www.imopc.com/

LD Language

IL Language
(* NPRID is a declared instance of NetPutRemoteIO_D function block *)

Op1: CAL NPRID(ID, SRC[], #N)

LD NPRID.STATUS
ST STATUS

See also
NetPutW NetPutWex NetPutHB NetPutRemoteIO_A

www.imopc.com 392

http://www.imopc.com/

Net Put Words
Operator - This element allows sending global data from any set of registers to any
device on the network using multiple network IDs. If source data is not transmitted
the function block will not pass power. Once the data is transmitted, function block
will pass power.

This function works with iCAN network.

Inputs
ID – (Type: INT)
ID - This is a register or constant for the ID to use when transmitting data on the
network. It must be in the range defined by the primary network ID and the total
nodes allocated for this target.
SRC[] – (Type: INT[], BOOL[])
This is the starting register for the source data to send on the network. This is a
register local to the controller.
@DST - (Type: INT, BOOL)
This is the starting register for the destination of the data. Note that %QG registers
must be on a word boundary (1, 17, 33...). This is a network register assigned to the
network ID.
#N - (Type: INT)
 This is the number of words to send on the network.

ST Language
(* NPW is a declared instance of NetPutW function block *)

NPW(ID, SRC[], @DST, #N);

FBD Language

LD Language

www.imopc.com 393

http://www.imopc.com/

IL Language
(* NPW is a declared instance of NetPutW function block *)

Op1: CAL NPW(ID, SRC[], @DST, #N)

See also
NetPutWex NetPutHB NetPutRemoteIO_A NetPutRemoteIO_D

www.imopc.com 394

http://www.imopc.com/

Net Put Wordex
Operator – This element allows sending global data using multiple network IDs.
When the "Send on Change of State" option is not checked, this function will copy the
data from the source registers and attempt to transmit the data every scan that this
function receives power. When the "Send on Change of State" option is checked and
the SEND trigger is set LOW while the function receives power, this function will
copy data from the source registers and attempt to transmit the data only if it changes.
When the "Send on Change of State" option is checked and the SEND trigger is set
HIGH while the function receives power, data will be sent every scan that the function
receives power.

This function only works with iCAN networks.

The function passes power if the ID is legal and in the range defined by the network
ID and the total number of ID assigned to that node.

Inputs
ID – (Type: INT)
ID - This is a register or constant for the ID to use when transmitting data on the
network. It must be in the range defined by the primary network ID and the total
nodes allocated for this target.
SRC[] – (Type: INT[], BOOL[])
 This is the starting register for the source data to send on the network. This is a
register local to the controller.
@DST - (Type: INT, BOOL)
This is the starting register for the destination of the data. Note that % QG registers
must be on a word boundary (1, 17, 33...). This is a network register assigned to the
network ID.
N - (Type: INT)
This is the number of words to send on the network.
@SEND – (TYPE: BOOL)
If the option to "Send on Change of State" is checked within the Net Put
configuration, a Send trigger must be configured. This registers, when high, forces a
data transmission and ignores the Change of State.

ST Language
(* NPWEX is a declared instance of NetPutWex function block *)

NPWEX(ID, SRC[], @ DST, # N, @SEND);

FBD Language

www.imopc.com 395

http://www.imopc.com/

LD Language

IL Language
(* NPWEX is a declared instance of NetPutWex function block *)

Op1 : CAL NPWEX(ID, SRC[], @ DST, # N, @SEND)

See also
NetPutW NetPutHB NetPutRemoteIO_A NetPutRemoteIO_D

www.imopc.com 396

http://www.imopc.com/

Floating PID Operations

Floating PID Operations
Below are the standard blocks for Floating PID operations:

PID_IND_Real
PID_IND_Auto_Real
PID_ISA_Real
PID_ISA_Auto_Real
SETPID_Real
SETPIDMAN_R

PID independent
PID independent with Auto Tuning feature
PID ISA
PID ISA with Auto Tuning feature
Sets PID registers

www.imopc.com 397

http://www.imopc.com/

PID_IND_R
Operator - Performs the proportional integral derivative (PID) IND algorithm for real
SP, PV & to output a real CV value.

Inputs
CB[]: Input indicating the location of a control block used to maintain the PID state
for this PID loop. (TYPE : INT[])

SP: Process Setpoint (TYPE : REAL)
Enter a register address, or select a named register. This is the location of the User-
defined Process Setpoint value. This value may be a decimal constant.

PV: Process Variable (TYPE : REAL)
Enter a register address or select a named register. This is the location of the Process
Variable value coming in from the process.

MAN EN: Manual / Auto Boolean Switch (TYPE : BOOL)
Enter a register address or select a named register that is the User-controlled Manual
Input bit. This register is a Boolean (1-bit) register.

UP: Manual Mode up adjustment input (TYPE : BOOL)
Enter a register address or select a named register that is the User-controlled UP Input
bit. This register is a Boolean (1-bit) register.

DOWN: Manual Mode down adjustment (TYPE : BOOL)
Enter a register address or select a named register that is the User-controlled DOWN
Input bit. This register is a Boolean (1-bit) register.

MUL: This selects the precision of the real inputs used in the PID loops. For example
if accuracy to 0.01 is required in the loop, select 0.01. (TYPE : REAL)

Outputs
CV: The control variable result (TYPE : REAL)
Enter a register address, or select a named register. This is the location of the Control
Variable value going out to the process.

Remarks
Independent PID Real PID_INT_R:
CVout = (Kp * Error) + (Ki * Error * dt) + (Kd * Derivative) + CVBias
 Where:
dt = Internal elapsed time clock - previous elapsed time clock
Derivative = (Error - previous Error)/dt
--or--
Derivative = (pv - previous PV)/dt
[User selectable during configuration].
Ti = Integral time
Td = Derivative time

Register Usage

www.imopc.com 398

http://www.imopc.com/

Either PID element requires an array of fifteen (15) WORD (16-bit) registers. These
will presumably be of type %R. This is called the Reference Array.

Offset Parameter Units Range Description

0 Sample
Period 10 mS 0 to 65535 The shortest time, in 10mS increments,

allowed between PID solutions.

1 Dead Band + PV
Counts 0 to 32000

Defines the Upper and Lower Dead Band
limits in terms of PV counts.
Set both to 0 (zero) if no dead band is
required.
Both should be set to 0 (zero) until the PID
is tuned. A Dead Band might then be
necessary to prevent small changes in CV
values due to slight variations in error.

2 Dead Band - PV
Counts 0 to 32000

3
Proportional
Gain
(Kp)

Percent 0 to 327.67%
Sets the Proportional Gain (Kp) factor in
terms of percent. 100 sets unity gain (gain
of 1).

4
Derivative
Gain
(Kd)

10 mS 0 to 327.67
seconds

Entered as a time with a resolution of 10
mS.
In the PID equation this has the effect: Kd
* delta Error / dt.

5 Integral Rate
(Ki)

Repeats
per
1000
second

0 to 32.767
repeats per
second

Entered as a number of repeats per second
-- effectively the integration rate. In the
PID equation this has the effect: Ki * Error
* dt.

6 CV Bias CV
Counts

-32000 to
+32000

Number of CV counts added to the output
before the rate and amplitude clamps.

7 CV Upper
Clamp

CV
Counts

-32000 to
+32000

Number of CV Counts that represent the
highest and lowest value for CV. CV
Upper Clamp must be more positive the
CV Lower Clamp.

8 CV Lower
Clamp

CV
Counts

-32000 to
+32000

9
Minimum
Slew
Time

Seconds
of
full
travel

0 to 32000
seconds to move
32000 CV counts

Determines how fast the CV value can
change.

10 Config Word N/A N/A Internal Use - Do not modify this value.

11 Manual
Command

CV
Counts

Tracks CV in
Auto mode; sets
CV in Manual
Mode.

In the Automatic mode this register tracks
the CV value.
In the Manual Mode, this register contains
the value that is output to the CV within
the clamp and slew limits.

www.imopc.com 399

http://www.imopc.com/

12 Internal SP Used by
i³ N/A Tracks SP in multiplied by the input MUL

13 Internal PV Used by
i³ N/A Tracks PV in multiplied by the input MUL

14 Internal CV Used by
i³ N/A Tracks CV out multiplied by the input

MUL

15 Cycle Time Seconds N/A Cycle Time for PWM in Seconds

Each PID element must use a distinctly separate reference Array, even if the values
are identical to an exiting PID element. There can be no overlapping of PID elements.

Registers at offset 0 through 9 must be configured before the PID element is used.

Examples: PID_IND_R1 is a declared instance of PID_IND_R function block.

ST Language
PID_IND_R1(CB[], SP, PV, MANEN, UP, DOWN, MUL);
CV := PID_IND_R1.CV;

FBD Language
LD Language
En is the Enable input & Eno is the enable output. En & Eno will be the same state.

The other functionality is similar to that of a FBD.

IL Language
(*PID_IND_R1 is a declared instance of PID_IND_R function block *)

Op1: CAL PID_IND_R1(CB[], SP, PV, MANEN, UP, DOWN, MUL)
LD PID_IND_R1.CV
ST CV

Caution: Overlapping references will result in erratic operation of the PID algorithm.

See also
Overview_PID | Tuning_PID | Independent PID Loop | Independent PID with
Auto Tune | ISA PID Loop | ISA PID with Auto Tune | Set PID Control Block |
 Set PID MAN

www.imopc.com 400

http://www.imopc.com/

PID_IND_AUTO_R
Operator - Performs the proportional integral derivative (PID) IND algorithm with
auto tuning function for real SP, PV & to output a real CV value.

Inputs
CB[]: Input indicating the location of a control block used to maintain the PID state
for this PID loop. (TYPE : INT[])

SP: Process Setpoint (TYPE : REAL)
Enter a register address, or select a named register. This is the location of the User-
defined Process Setpoint value. This value may be a decimal constant.

PV: Process Variable (TYPE : REAL)
Enter a register address or select a named register. This is the of the Process Variable
value coming in from the process.

MAN EN: Manual / Auto Boolean Switch (TYPE : BOOL)
Enter a register address or select a named register that is the User-controlled Manual
Input bit. This register is a Boolean (1-bit) register.

UP: Manual Mode up adjustment input (TYPE : BOOL)
Enter a register address or select a named register that is the User-controlled UP Input
bit. This register is a Boolean (1-bit) register.

DOWN: Manual Mode down adjustment (TYPE : BOOL)
Enter a register address or select a named register that is the User-controlled DOWN
Input bit. This register is a Boolean (1-bit) register.

TUNE: Input which controls when the function should start the auto tune
process. (TYPE : BOOL)
A boolean TUNE input starts the autotuning cycle. This input needs to be held high
during the autotuning cycle. If it is negated during the AUTOTUNE cycle, the
controller stops autotune and reverts to the previous settings.

#FILTER : (TYPE : DINT)
Allowable inputs:
FILTER_0_04 – Filters at 0.04%
FILTER_0_08 – Filters at 0.08%
FILTER_0_16 – Filters at 0.16%
FILTER_0_31 – Filters at 0.31%
FILTER_0_63 – Filters at 0.63%
FILTER_1_25 – Filters at 1.25%
FILTER_2_50 – Filters at 2.5%
FILTER_5_00 – Filters at 5%

This input defines how far above and below the setpoint the process must go when
performing the auto tune experiment. Hysteresis is applied to the setpoint using the

www.imopc.com 401

http://www.imopc.com/

selected filter constant – if the process is subject to noise it is recommended that the
process autotune is setup with a higher percentage. Higher noise rejection filters will
also cause the autotuning algorithm to select slightly slower more stable coefficients.
Where the process is noisy it is recommended that PI rather than PID control is
selected.

#RESP : (TYPE : DINT)
Allowable Inputs
PID_FAST
PID_MEDIUM
PID_SLOW
PID_VERYSLOW

This defines the relative speed of the PID loop once it is tuned.

#TYPE : (TYPE : DINT)
Allowable Values:
TYPE_PID
TYPE_PI
TYPE_P
This option allows the auto tune procedure to calculate terms for PID, PI or P terms.

#TUNE2/3 : (TYPE : BOOL)
This allows the auto tuning experiment to change the output based on 2/3 the set
point. Use this option when it is not desired for the process to travel above the setpoint
during the auto tuning experiment.

MUL: This selects the precision of the real inputs used in the PID loops. For example
if accuracy to 0.01 is required in the loop, select 0.01. (TYPE : REAL).

Outputs
CV: The control variable result (TYPE : REAL)
Enter a register address, or select a named register. This is the location of the Control
Variable value going out to the process.

DONE: The control variable result (TYPE : BOOL)
This defines an output bit that is set by the function when the auto tune is complete.

Remarks
Independent PID_Auto_R:
CVout = (Kp * Error) + (Ki * Error * dt) + (Kd * Derivative) + CVBias
 Where:
dt = Internal elapsed time clock - previous elapsed time clock
Derivative = (Error - previous Error)/dt
--or--
Derivative = (pv - previous PV)/dt
[User selectable during configuration].
Ti = Integral time

www.imopc.com 402

http://www.imopc.com/

Td = Derivative time

Register Usage
Either PID element requires an array of fifteen (15) WORD (16-bit) registers. These
will presumably be of type %R. This is called the Reference Array.

Offset Parameter Units Range Description

0 Sample
Period 10 mS 0 to 65535 The shortest time, in 10mS increments,

allowed between PID solutions.

1 Dead Band + PV
Counts 0 to 32000

Defines the Upper and Lower Dead Band
limits in terms of PV counts.
Set both to 0 (zero) if no dead band is
required.
Both should be set to 0 (zero) until the PID
is tuned. A Dead Band might then be
necessary to prevent small changes in CV
values due to slight variations in error.

2 Dead Band - PV
Counts 0 to 32000

3
Proportional
Gain
(Kp)

Percent 0 to 327.67%
Sets the Proportional Gain (Kp) factor in
terms of percent. 100 sets unity gain (gain
of 1).

4
Derivative
Gain
(Kd)

10 mS 0 to 327.67
seconds

Entered as a time with a resolution of 10
mS.
In the PID equation this has the effect: Kd
* delta Error / dt.

5 Integral Rate
(Ki)

Repeats
per
1000
second

0 to 32.767
repeats per
second

Entered as a number of repeats per second
-- effectively the integration rate. In the
PID equation this has the effect: Ki * Error
* dt.

6 CV Bias CV
Counts

-32000 to
+32000

Number of CV counts added to the output
before the rate and amplitude clamps.

7 CV Upper
Clamp

CV
Counts

-32000 to
+32000

Number of CV Counts that represent the
highest and lowest value for CV. CV
Upper Clamp must be more positive the
CV Lower Clamp.

8 CV Lower
Clamp

CV
Counts

-32000 to
+32000

9
Minimum
Slew
Time

Seconds
of
full
travel

0 to 32000
seconds to move
32000 CV counts

Determines how fast the CV value can
change.

10 Config Word N/A N/A Internal Use - Do not modify this value.

11 Manual
Command

CV
Counts

Tracks CV in
Auto mode; sets

In the Automatic mode this register tracks
the CV value.

www.imopc.com 403

http://www.imopc.com/

CV in Manual
Mode.

In the Manual Mode, this register contains
the value that is output to the CV within
the clamp and slew limits.

12 Internal SP Used by
i³ N/A Tracks SP in multiplied by the input MUL

13 Internal PV Used by
i³ N/A Tracks PV in multiplied by the input MUL

14 Internal CV Used by
i³ N/A Tracks CV out multiplied by the input

MUL

15 Cycle Time Seconds N/A Cycle Time for PWM in Seconds

Each PID element must use a distinctly separate reference Array, even if the values
are identical to an exiting PID element. There can be no overlapping of PID elements.

Registers at offset 0 through 9 must be configured before the PID element is used.

Examples: PID_IND_Auto_R1 is a declared instance of PID_IND_Auto_R function
block

ST Language
PID_IND_Auto_R1(CB[], SP, PV, MANEN, UP, DOWN, TUNE, #FILTER, #RESP,
#TYPE, #TUNE2/3, MUL);
CV := PID_IND_Auto_R1.CV ;
Done := PID_IND_Auto_R1.Done;

FBD Language

LD Language
En is the Enable input & Eno is the enable output. En & Eno will be the same state.

The other functionality is similar to that of a FBD.

IL Language
Op1: CAL PID_IND_Auto_R1(CB[], SP, PV, MANEN, UP, DOWN, TUNE,
#FILTER, #RESP, #TYPE, #TUNE2/3, MUL)
LD PID_IND_Auto_R1.CV
ST CV
LD PID_IND_Auto_R1.Done
ST Done

Caution: Overlapping references will result in erratic operation of the PID algorithm.

www.imopc.com 404

http://www.imopc.com/

See also
Overview_PID | Tuning_PID | Independent PID Loop | Independent PID with
Auto Tune | ISA PID Loop | ISA PID with Auto Tune | Set PID Control Block |
 Set PID MAN

www.imopc.com 405

http://www.imopc.com/

PID_ISA_R
Operator - Performs the proportional integral derivative (PID) IND algorithm for real
SP, PV & to output a real CV value.

Inputs
CB[]: Input the values of the register usage mentioned below. (TYPE : INT[])
SP: Process Setpoint (TYPE : REAL)
Enter a register address, or select a named register. This is the location of the User-
defined Process Setpoint value. This value may NOT be a decimal constant.
 PV: Process Variable (TYPE : REAL)
Enter a register address or select a named register. This is the location (typically
%AI) of the Process Variable value coming in from the process. This value may
NOT be a decimal constant.
 MAN EN: Manual / Auto Boolean Switch (TYPE : BOOL)
Enter a register address or select a named register that is the User-controlled Manual
Input bit. This register is a Boolean (1-bit) register, typically %T.
 UP: Manual Mode up adjustment input (TYPE : BOOL)
Enter a register address or select a named register that is the User-controlled UP Input
bit. This register is a Boolean (1-bit) register, typically %T.
 DOWN: Manual Mode down adjustment (TYPE : BOOL)
Enter a register address or select a named register that is the User-controlled DOWN
Input bit. This register is a Boolean (1-bit) register, typically %T.
MUL: This selects the precision of the real inputs used in the PID loops. For example
if accuracy to 0.01 is required in the loop, select 0.01. (TYPE : REAL)

Outputs
CV: The control variable result (TYPE : REAL)
Enter a register address, or select a named register. This is the location (typically
%AQ) of the Control Variable value going out to the process. This value may NOT
be a decimal constant.

Remarks
PID_ISA_R :
CVout = Kp * (Error + (Error * dt / Ti) + (Td * Derivative)) + CVBias
 Where:
dt = Internal elapsed time clock - previous elapsed time clock
Derivative = (Error - previous Error)/dt
--or--
Derivative = (pv - previous PV)/dt
[User selectable during configuration].
Ti = Integral time
Td = Derivative time

Register Usage

www.imopc.com 406

http://www.imopc.com/

Either PID element requires an array of fifteen (15) WORD (16-bit) registers. These
will typically be of type %R. This is called the Reference Array.

Offset Parameter Units Range Description

0 Sample
Period 10 mS 0 to 65535 The shortest time, in 10mS increments,

allowed between PID solutions.

1 Dead Band + PV Counts 0 to 32000

Defines the Upper and Lower Dead Band
limits in terms of PV counts.
Set both to 0 (zero) if no dead band is
required.
Both should be set to 0 (zero) until the
PID is tuned. A Dead Band might then be
necessary to prevent small changes in CV
values due to slight variations in error.

2 Dead Band - PV Counts 0 to 32000

3
Proportional
Gain
(Kp)

Percent 0 to 327.67%
Sets the Proportional Gain (Kp) factor in
terms of percent. 100 sets unity gain
(gain of 1).

4
Derivative
Gain
(Kd)

10 mS 0 to 327.67
seconds

Entered as a time with a resolution of 10
mS.
In the PID equation this has the effect:
Kd * delta Error / dt.

5 Integral Rate
(Ki)

Repeats per
1000
second

0 to 32.767
repeats per
second

Entered as a number of repeats per
second -- effectively the integration rate.
In the PID equation this has the effect: Ki
* Error * dt.

6 CV Bias CV Counts -32000 to
+32000

Number of CV counts added to the
output before the rate and amplitude
clamps.

7 CV Upper
Clamp CV Counts -32000 to

+32000

Number of CV Counts that represent the
highest and lowest value for CV. CV
Upper Clamp must be more positive the
CV Lower Clamp.

8 CV Lower
Clamp CV Counts -32000 to

+32000

9
Minimum
Slew
Time

Seconds of
full travel

0 to 32000
seconds to
move 32000
CV counts

Determines how fast the CV value can
change.

10 Config Word N/A N/A Internal Use - Do not modify this
value.

www.imopc.com 407

http://www.imopc.com/

11 Manual
Command CV Counts

Tracks CV in
Auto mode;
sets CV in
Manual Mode.

In the Automatic mode this register
tracks the CV value.
In the Manual Mode, this register
contains the value that is output to the
CV within the clamp and slew limits.

12 Internal SP Used by i³ N/A Tracks SP in

13 Internal PV Used by i³ N/A Tracks PV in

14 Internal CV Used by i³ N/A Tracks CV out

15 Cycle Time Seconds N/A Cycle Time for PWM in Seconds

Each PID element must use a distinctly separate reference Array, even if the values
are identical to an exiting PID element. There can be no overlapping of PID elements.

Registers at offset 0 through 9 must be configured before the PID element is used.

Examples: PID_ISA_R1 is a declared instance of PID_ISA_R function block

ST Language
PID_ISA_R1(CB[], SP, PV, MANEN, UP, DOWN);
CV := PID_ISA_R1.CV;

FBD Language

LD Language

www.imopc.com 408

http://www.imopc.com/

En is the Enable input & Eno is the enable output. En & Eno will be the same state.

The other functionality is similar to that of a FBD.

IL Language
Op1: CAL PID_ISA_R1(CB[], SP, PV, MANEN, UP, DOWN)
LD PID_ISA_R1.CV
ST CV

Caution: Overlapping references will result in erratic operation of the PID algorithm.

See also
Overview_PID | Tuning_PID | Independent PID Loop | Independent PID with
Auto Tune | ISA PID Loop | ISA PID with Auto Tune | Set PID Control Block |
 Set PID MAN

www.imopc.com 409

http://www.imopc.com/

PID_ISA_AUTO_R
Operator - Performs the proportional integral derivative (PID) IND algorithm with auto tuning
function. For real SP, PV & to output a real CV value.
Inputs
CB[]: Input the values of the register usage mentioned below. (TYPE: INT[])

SP: Process Setpoint (TYPE: REAL)
Enter a register address, or select a named register. This is the location of the User-
defined Process Setpoint value. This value may NOT be a decimal constant.

PV: Process Variable (TYPE: REAL)
Enter a register address or select a named register. This is the location (typically
%AI) of the Process Variable value coming in from the process. This value may NOT
be a decimal constant.

MAN EN: Manual / Auto Boolean Switch (TYPE: BOOL)
Enter a register address or select a named register that is the User-controlled Manual
Input bit. This register is a Boolean (1-bit) register, typically %T.

UP: Manual Mode up adjustment input (TYPE: BOOL)
Enter a register address or select a named register that is the User-controlled UP Input
bit. This register is a Boolean (1-bit) register, typically %T.

DOWN: Manual Mode down adjustment (TYPE: BOOL)
Enter a register address or select a named register that is the User-controlled DOWN
Input bit. This register is a Boolean (1-bit) register, typically %T.

TUNE: Input which controls when the function should start the auto tune
process. (TYPE: BOOL)
A boolean TUNE input starts the autotuning cycle. This input needs to be held high
during the autotuning cycle. If it is negated during the AUTOTUNE cycle, the
controller stops autotune and reverts to the previous settings.

#FILTER: (TYPE: DINT)
Allowable inputs:
FILTER_0_04 – Filters at 0.04%
FILTER_0_08 – Filters at 0.08%
FILTER_0_16 – Filters at 0.16%
FILTER_0_31 – Filters at 0.31%
FILTER_0_63 – Filters at 0.63%
FILTER_1_25 – Filters at 1.25%
FILTER_2_50 – Filters at 2.5%
FILTER_5_00 – Filters at 5%

This input defines how far above and below the setpoint the process must go when
performing the auto tune experiment. Hysteresis is applied to the setpoint using the
selected filter constant – if the process is subject to noise it is recommended that the
process autotune is setup with a higher percentage. Higher noise rejection filters will
also cause the autotuning algorithm to select slightly slower more stable coefficients.

www.imopc.com 410

http://www.imopc.com/

Where the process is noisy it is recommended that PI rather than PID control is
selected.

#RESP: (TYPE: DINT)
Allowable Inputs
PID_FAST
PID_MEDIUM
PID_SLOW
PID_VERYSLOW

This defines the relative speed of the PID loop once it is tuned.

#TYPE: (TYPE: DINT)
Allowable Values:
TYPE_PID
TYPE_PI
TYPE_P
This option allows the auto tune procedure to calculate terms for PID, PI or P terms.

#TUNE2/3: (TYPE: BOOL)
This allows the auto tuning experiment to change the output based on 2/3 the set
point. Use this option when it is not desired for the process to travel above the setpoint
during the auto tuning experiment.

MUL: This selects the precision of the real inputs used in the PID loops. For example
if accuracy to 0.01 is required in the loop, select 0.01. (TYPE: REAL)

Outputs
CV: The control variable result (TYPE: REAL)
Enter a register address, or select a named register. This is the location (typically
%AQ) of the Control Variable value going out to the process. This value may NOT
be a decimal constant.

DONE: The control variable result (TYPE: BOOL)
This defines an output bit that is set by the function when the auto tune is complete.

Remarks
PID_ ISA_Auto_R :
CVout = Kp * (Error + (Error * dt / Ti) + (Td * Derivative)) + CVBias
 Where:
dt = Internal elapsed time clock - previous elapsed time clock
Derivative = (Error - previous Error)/dt
--or--
Derivative = (pv - previous PV)/dt
[User selectable during configuration].
Ti = Integral time
Td = Derivative time
Register Usage
Either PID element requires an array of fifteen (15) WORD (16-bit) registers. These
will typically be of type %R. This is called the Reference Array.

www.imopc.com 411

http://www.imopc.com/

Offset Parameter Units Range Description

0 Sample Period 10 mS 0 to 65535 The shortest time, in 10mS increments,
allowed between PID solutions.

1 Dead Band + PV Counts 0 to 32000

Defines the Upper and Lower Dead Band
limits in terms of PV counts.
Set both to 0 (zero) if no dead band is
required.
Both should be set to 0 (zero) until the
PID is tuned. A Dead Band might then be
necessary to prevent small changes in CV
values due to slight variations in error.

2 Dead Band - PV Counts 0 to 32000

3 Proportional
Gain (Kp) Percent 0 to 327.67%

Sets the Proportional Gain (Kp) factor in
terms of percent. 100 sets unity gain (gain
of 1).

4 Derivative
Gain (Kd) 10 mS 0 to 327.67

seconds

Entered as a time with a resolution of 10
mS.
In the PID equation this has the effect: Kd
* delta Error / dt.

5 Integral Rate
(Ki)

Repeats per
1000
second

0 to 32.767
repeats per
second

Entered as a number of repeats per second
-- effectively the integration rate. In the
PID equation this has the effect: Ki *
Error * dt.

6 CV Bias CV Counts -32000 to
+32000

Number of CV counts added to the output
before the rate and amplitude clamps.

7 CV Upper
Clamp CV Counts -32000 to

+32000

Number of CV Counts that represent the
highest and lowest value for CV. CV
Upper Clamp must be more positive the
CV Lower Clamp.

8 CV Lower
Clamp CV Counts -32000 to

+32000

9
Minimum
Slew
Time

Seconds of
full travel

0 to 32000
seconds to
move 32000
CV counts

Determines how fast the CV value can
change.

10 Config Word N/A N/A Internal Use - Do not modify this value.

www.imopc.com 412

http://www.imopc.com/

11 Manual
Command CV Counts

Tracks CV in
Auto mode;
sets CV in
Manual
Mode.

In the Automatic mode this register tracks
the CV value.
In the Manual Mode, this register contains
the value that is output to the CV within
the clamp and slew limits.

12 Internal SP Used by i³ N/A Tracks SP in

13 Internal PV Used by i³
 N/A Tracks PV in

14 Internal CV Used by i³ N/A Tracks CV out

15 Cycle Time Seconds N/A Cycle Time for PWM in Seconds

Each PID element must use a distinctly separate Reference Array, even if the values
are identical to an exiting PID element.

There can be no overlapping of PID elements.

Registers at offset 0 through 9 must be configured before the PID element is used.

Examples: PID_ISA_Auto_R1 is a declared instance of PID_ISA_Auto_R function
block

ST Language
PID_ISA_Auto_R1(CB[], SP, PV, MANEN, UP, DOWN, TUNE, #FILTER, #RESP,
#TYPE, #TUNE2/3);
CV := PID_ISA_Auto_R1.CV;
DONE := PID_ISA_Auto_R1.Done;

FBD Language

LD Language
En is the Enable input & Eno is the enable output. En & Eno will be the same state.

The other functionality is similar to that of a FBD.

IL Language
Op1: CAL PID_ISA_Auto_R1(CB[], SP, PV, MANEN, UP, DOWN, TUNE,
#FILTER, #RESP, #TYPE, #TUNE2/3)
LD PID_ISA_Auto_R1.CV
ST CV
LD PID_ISA_Auto_R1.Done
ST DONE

Caution: Overlapping references will result in erratic operation of the PID algorithm.

www.imopc.com 413

http://www.imopc.com/

See also
Overview_PID | Tuning_PID | Independent PID Loop | Independent PID with
Auto Tune | ISA PID Loop | ISA PID with Auto Tune | Set PID Control Block |
 Set PID MAN

www.imopc.com 414

http://www.imopc.com/

SETPID_R
Operator - Performs the setting for PID Registers as Real data type for KP, KD, KI & to CV
Bias, Upclamp and DnClamp value.

Inputs
CB[]: Input the values of the register usage mentioned below (TYPE : INT[])
PERIOD: Sample Period (TYPE : INT)
DEADBAND + : Dead Band + (TYPE : INT)
Defines the Upper Dead Band limits in terms of PV counts.
Set to 0 (zero) if no dead band is required.
DEADBAND - : Dead Band - (TYPE : INT)
Defines the Upper Dead Band limits in terms of PV counts.
Set to 0 (zero) if no dead band is required.
Both Deadbands be set to 0 (zero) until the PID is tuned. A Dead Band might then be
necessary to prevent small changes in CV values due to slight variations in error.
Kp: Proportional Gain (TYPE : REAL)
Sets the Proportional Gain (Kp) factor in terms of percent.
100 sets unity gain (gain of 1).
Kd: Derivative Gain (TYPE : REAL)
Entered as a time with a resolution of 10 mS.
In the PID equation this has the effect: Kd * delta Error / dt.
Ki: Integral Rate (TYPE : REAL)
Entered as a number of repeats per second -- effectively the integration rate. In the
PID equation this has the effect: Ki * Error * dt.
CVBias: CV Bias (TYPE : REAL)
Number of CV counts added to the output before the rate and amplitude clamps.
CVUpClamp: CV Upper Clamp (TYPE : REAL)
Number of CV Counts that represent the highest value for CV. CV Upper Clamp must
be more positive the CV Lower Clamp.
CVDnClamp: CV Down Clamp (TYPE : REAL)
Number of CV Counts that represent the lowest value for CV. CV Upper Clamp must
be more positive the CV Lower Clamp.
MinSlew: Minimum Slew Time (TYPE : INT)
Determines how fast the CV value can change.
ErrAction: Error Action (TYPE : BOOL)
DAction: (TYPE : BOOL)
OutPol: (TYPE : BOOL)
Dsense: (TYPE : BOOL)
MUL: This selects the precision of the real inputs used in the PID loops. For
example if accuracy to 0.01 is required in the loop, select 0.01. (TYPE: REAL)

Remarks
Register Usage
Either PID element requires an array of fifteen (15) WORD (16-bit) registers. These
will typically be of type %R. This is called the reference Array.

Registers at offset 0 through 9 must be configured before the PID element is used.

This is configured using the SetPID block.

www.imopc.com 415

http://www.imopc.com/

Offset Parameter Units Range Description

0 Sample Period 10 mS 0 to 65535 The shortest time, in 10mS increments,
allowed between PID solutions.

1 Dead Band + PV Counts 0 to 32000

Defines the Upper and Lower Dead
Band limits in terms of PV counts.
Set both to 0 (zero) if no dead band is
required.
Both should be set to 0 (zero) until the
PID is tuned. A Dead Band might then
be necessary to prevent small changes in
CV values due to slight variations in
error.

2 Dead Band - PV Counts 0 to 32000

3 Proportional
Gain (Kp) Percent 0 to 327.67%

Sets the Proportional Gain (Kp) factor in
terms of percent. 100 sets unity gain
(gain of 1).

4
Derivative
Gain
(Kd)

10 mS 0 to 327.67
seconds

Entered as a time with a resolution of 10
mS.
In the PID equation this has the effect:
Kd * delta Error / dt.

5 Integral Rate
(Ki)

Repeats
per
1000
second

0 to 32.767
repeats per
second

Entered as a number of repeats per
second -- effectively the integration rate.
In the PID equation this has the effect:
Ki * Error * dt.

6 CV Bias CV
Counts

-32000 to
+32000

Number of CV counts added to the
output before the rate and amplitude
clamps.

7 CV Upper
Clamp

CV
Counts

-32000 to
+32000

Number of CV Counts that represent the
highest and lowest value for CV. CV
Upper Clamp must be more positive the
CV Lower Clamp.

8 CV Lower
Clamp

CV
Counts

-32000 to
+32000

9 Minimum Slew
Time

Seconds of
full travel

0 to 32000
seconds to
move 32000
CV counts

Determines how fast the CV value can
change.

Each PID element must use a distinctly separate reference Array, even if the values
are identical to an exiting PID element. There can be no overlapping of PID elements.

Examples: SETPID_R1 is a declared instance of SetPID_R function block

www.imopc.com 416

http://www.imopc.com/

ST Language
SETPID_R1(CB[], Period, DeadBand +, Deadband-, Kp, Kd, Ki, CVBias,
CVUpClamp, CVDnClamp, MinSlew, ErrAction, DAction, Outpol, Dsense, MUL);

FBD Language

LD Language
En is the Enable input & Eno is the enable output. En & Eno will be the same state.

The other functionality is similar to that of a FBD.

IL Language
Op1: CAL SETPID_R1(CB[], Period, DeadBand+, Deadband-, Kp, Kd, Ki, CVBias,
CVUpClamp, CVDnClamp, MinSlew, ErrAction, DAction, Outpol, Dsense, MUL)

Caution: Overlapping references will result in erratic operation of the PID algorithm.

See also
Overview_PID | Tuning_PID | Independent PID Loop | Independent PID with
Auto Tune | ISA PID Loop | ISA PID with Auto Tune | Set PID Control Block |
 Set PID MAN

www.imopc.com 417

http://www.imopc.com/

SETPIDMAN_R
Operator: Sets in Manual mode, the PID associated with the Control block with the
Input to this block as Control Output value.

Inputs
CB[]: Input the values of the register usage mentioned below (TYPE : INT[])
IN: Input value that will be fed to the Control Variable as Manual Output (TYPE:
REAL)
MUL: This selects the precision of the real inputs used in the PID loops. For
example if accuracy to 0.01 is required in the loop, select 0.01. (TYPE: REAL)

Output
OK: Block execution indicator, it goes high if the block has been executed
successfully.

Remarks
Register Usage
Either PID element requires an array of fifteen (15) WORD (16-bit) registers. These
will typically be of type %R. This is called the reference Array.

Registers at offset 0 through 9 must be configured before the PID element is used.

This is configured using the SETPID block.

Offset Parameter Units Range Description

0 Sample Period 10 mS 0 to 65535 The shortest time, in 10mS increments,
allowed between PID solutions.

1 Dead Band + PV Counts 0 to 32000

Defines the Upper and Lower Dead Band
limits in terms of PV counts.
Set both to 0 (zero) if no dead band is
required.
Both should be set to 0 (zero) until the
PID is tuned. A Dead Band might then
be necessary to prevent small changes in
CV values due to slight variations in
error.

2 Dead Band - PV Counts 0 to 32000

3 Proportional
Gain (Kp) Percent 0 to 327.67%

Sets the Proportional Gain (Kp) factor in
terms of percent. 100 sets unity gain
(gain of 1).

4
Derivative
Gain
(Kd)

10 mS 0 to 327.67
seconds

Entered as a time with a resolution of 10
mS.
In the PID equation this has the effect:
Kd * delta Error / dt.

www.imopc.com 418

http://www.imopc.com/

5 Integral Rate
(Ki)

Repeats
per
1000
second

0 to 32.767
repeats per
second

Entered as a number of repeats per
second -- effectively the integration rate.
In the PID equation this has the effect:
Ki * Error * dt.

6 CV Bias CV
Counts

-32000 to
+32000

Number of CV counts added to the
output before the rate and amplitude
clamps.

7 CV Upper
Clamp

CV
Counts

-32000 to
+32000

Number of CV Counts that represent the
highest and lowest value for CV. CV
Upper Clamp must be more positive the
CV Lower Clamp.

8 CV Lower
Clamp

CV
Counts

-32000 to
+32000

9 Minimum Slew
Time

Seconds of
full travel

0 to 32000
seconds to
move 32000
CV counts

Determines how fast the CV value can
change.

Each PID element must use a distinctly separate reference Array, even if the values
are identical to an exiting PID element. There can be no overlapping of PID elements.

ST Language
SETPIDMAN(CB, IN);
OK := SETPIDMAN. OK;

FBD Language

Ladder Language

IL Language
OP1: CAL IN;
LD SETPIDMAN(CB)
ST Q

www.imopc.com 419

http://www.imopc.com/

See also
Overview_PID | Tuning_PID | Independent PID Loop | Independent PID with
Auto Tune | ISA PID Loop | ISA PID with Auto Tune | Set PID Control Block |
 Set PID MAN

www.imopc.com 420

http://www.imopc.com/

Timer Counter Operations

Timer Counter Operations
Below are the standard functions for managing timers:

Off Timer - 100 ms Res.
Off Timer - 100 ms Res. 32 Bit
Off Timer - 10 ms Res.
Off Timer - 10 ms Res. 32 Bit
Off Timer - 1 ms Res.
Off Timer - 1 ms Res. 32 Bit
Off Timer - 1 Sec Res.
Off Timer - 1 Sec Res. 32 Bit

On Timer - 100 ms Res.
On Timer - 100 ms Res. 32 Bit
On Timer - 10 ms Res.
On Timer - 10 ms Res. 32 Bit
On Timer - 1 ms Res.
On Timer - 1 ms Res. 32 Bit
On Timer - 1 Sec Res.
On Timer - 1 Sec Res. 32 Bit

On Timer - 100 ms Res. Retentive
On Timer - 100 ms Res. 32 Bit
Retentive
On Timer - 10 ms Res. Retentive
On Timer - 10 ms Res. 32 Bit
Retentive
On Timer - 1 ms Res. Retentive
On Timer - 1 ms Res. 32 Bit
Retentive
On Timer - 1 Sec Res. Retentive
On Timer - 1 Sec Res. 32 Bit
Retentive

Off delay timer with 100ms resolution
Off delay timer with 100ms resolution 32 Bit
Off delay timer with 10ms resolution
Off delay timer with 10ms resolution 32 Bit
Off delay timer with 1ms resolution
Off delay timer with 1ms resolution 32 Bit
Off delay timer with 1 Sec resolution
Off delay timer with 1 Sec resolution 32 Bit

On delay timer with 100ms resolution
On delay timer with 100ms resolution 32 Bit
On delay timer with 10ms resolution
On delay timer with 10ms resolution 32 Bit
On delay timer with 1ms resolution
On delay timer with 1ms resolution 32 Bit
On delay timer with 1 Sec resolution
On delay timer with 1 Sec resolution 32 Bit

On delay timer with 100ms resolution Retentive
On delay timer with 100ms resolution 32 Bit Retentive
On delay timer with 10ms resolution Retentive
On delay timer with 10ms resolution 32 Bit Retentive
On delay timer with 1ms resolution Retentive
On delay timer with 1ms resolution 32 Bit Retentive
On delay timer with 1 Sec resolution Retentive
On delay timer with 1 Sec resolution 32 Bit Retentive

www.imopc.com 421

http://www.imopc.com/

TOF100mS / TOF10mS/TOF1mS/TOF1Sec - (Res. 32 Bit)
Operator - Performs OFF delay timer operations using these blocks with specified
timebase.

Resolution:
16 BIT Resolution Timers: The count value limit in these timers is 65535.
32 BIT Resolution Timers: The 32 –bit resolution Timers are useful in applications
were the count value needs is insufficient using the regular timers of 16 bit. The count
value limit in these timers is 4294967295.

Inputs
IN : Input for resetting Count up time (CT) & enable the output Q. (TYPE : BOOL)
PT : Programmed time, Maximum count up for Count up time (CT). (TYPE : INT)

Outputs
Q : Output which stays TRUE till the count up is active & goes FALSE when CT=PT.
(TYPE : BOOL)
CT : The counter for the specified timebase, to reach the Programmed time.
(TYPE : INT)

Remarks
The timer starts on a falling pulse of IN input. It stops when the Count up time (CT) is
equal to the programmed time (PT). A rising pulse of IN input resets the timer to 0.
The output signal is set to TRUE when the IN input rises to TRUE, reset to FALSE
when programmed time is elapsed for the specified timebase.
In LD language, the input rung is the IN command. The output rung is the Q output
signal.
The timebase is user definable in 10mS or 100mS ticks. When input IN goes high the
counting proceeds based on the timebase block used.

ST Language
(* TOF1 is a declared instance of TOF100ms function block *)
TOF1 (IN, PT);
Q := TOF1.Q;
CT := TOF1.CT;

or
(* TOF1 is a declared instance of TOF10ms function block *)
TOF1 (IN, PT);
Q := TOF1.Q;
CT := TOF1.CT;

FBD Language

www.imopc.com 422

http://www.imopc.com/

or

LD Language

or

IL Language
(* TOF1 is a declared instance of TOF100ms function block *)
Op1: CAL TOF1 (IN, PT)

LD TOF1.Q
ST Q
LD TOF1.CT
ST CT

or
 (* TOF1 is a declared instance of TOF10ms function block *)
Op1: CAL TOF1 (IN, PT)

LD TOF1.Q
ST Q
LD TOF1.CT
ST CT

See also
TON100ms TON10ms TONR100ms TONR10ms

www.imopc.com 423

http://www.imopc.com/

TON100mS / TON10mS/TON1mS / TON1Sec – (Res. 32 Bit)
Operator - Performs ON delay timer operations using these blocks with specified time
base.

Resolution:
16 BIT Resolution Timers: The count value limit in these timers is 65535.
32 BIT Resolution Timers: The 32 –bit resolution Timers are useful in applications
were the count value needs is insufficient using the regular timers of 16 bit. The count
value limit in these timers is 4294967295.

Inputs
IN : Input for starting Count up time (CT).(TYPE : BOOL)
PT : Programmed time, Maximum count up for CT. (TYPE : INT)

Outputs
Q : Output goes TRUE when CT = PT & goes FALSE when input is low. (TYPE :
BOOL)
CT : The counter of the timebase specified, to reach the Programmed time. (TYPE :
INT)

Remarks
The timer starts on a rising pulse of IN input. It stops when the Count up time (CT) is
equal to programmed time (PT). A falling pulse of IN input resets the timer to 0. The
output signal is set to TRUE when programmed time is elapsed, and reset to FALSE
when the input command falls.
In LD language, the input rung is the IN command. The output rung is Q the output
signal.
The timebase is user definable in 10mS or 100mS "ticks". When input IN goes high
the counting proceeds based on the timebase block used.

ST Language
(* TON1 is a declared instance of TON100ms function block *)
TON1 (IN, PT);
Q := TON1.Q;
CT := TON1.CT;

or
(* TON1 is a declared instance of TON10ms function block *)
TON1 (IN, PT);
Q := TON1.Q;
CT := TON1.CT;

FBD Language

www.imopc.com 424

http://www.imopc.com/

or

LD Language

or

IL Language
(* TON1 is a declared instance of TON100ms function block *)
Op1: CAL TON1 (IN, PT)

LD TON1.Q
ST Q
LD TON1.CT
ST CT

OR
(* TON1 is a declared instance of TON10ms function block *)
Op1: CAL TON1 (IN, PT)

LD TON1.Q
ST Q
LD TON1.CT
ST CT

See also
TOF100ms TOF10ms TONR100ms TONR10ms

www.imopc.com 425

http://www.imopc.com/

TONR100mS / TONR10mS/TONR1mS / TONR1Sec – (Res. 32 Bit)
Operator - Performs retentive ON timer operations using these blocks.

Resolution:
16 BIT Resolution Timers: The count value limit in these timers is 65535.
32 BIT Resolution Timers: The 32 –bit resolution Timers are useful in applications
were the count value needs is insufficient using the regular timers of 16 bit. The count
value limit in these timers is 4294967295.

Inputs
IN : Timer command. (TYPE : BOOL)
RESET : For resetting the counter CT & output Q. (TYPE : BOOL)
PT : Preset time, Maximum count up for CT. (TYPE : INT)

Outputs
Q : Output goes TRUE when CT = PT & goes FALSE when reset is pressed (TYPE :
BOOL)
CT : The counter of the timebase specified, to reach the Programmed time. Set to
zero if reset is pressed. (TYPE : INT)

Remarks
A Retentive On Delay Timer is a special case of the "standard" On Delay Timer. It
differs from the standard timer in that the Retentive Timer does not reset when the
input is brought inactive (off). The Retentive Timer requires that a reset signal be
applied to the element in order for the timer to be reset.

ST Language
(* TONR1 is a declared instance of TONR100ms function block *)
TONR1 (IN,RESET,PT);
Q := TONR1.Q;
CT := TONR1.CT;

or
(* TONR1 is a declared instance of TONR10ms function block *)
TONR1 (IN,RESET,PT);
Q := TONR1.Q;
CT := TONR1.CT;

FBD Language

www.imopc.com 426

http://www.imopc.com/

or

LD Language

or

IL Language
(* TONR1 is a declared instance of TONR100ms function block *)
Op1: CAL TONR1 (IN,RESET,PT)

LD TONR1.Q
ST Q
LD TONR1.CT
ST CT

OR
 (* TONR1 is a declared instance of TONR10ms function block *)
Op1: CAL TONR1 (IN,RESET,PT)

LD TONR1.Q
ST Q
LD TONR1.CT
ST CT

See also
TOF100ms TOF10ms TON100ms TON10ms

www.imopc.com 427

http://www.imopc.com/

Logic Modules

www.imopc.com 428

http://www.imopc.com/

IEC Modules

Main loop modules for IEC programs
Subroutine Modules | UDFB modules

These blocks are executed once on each scan of the PLC in the order in which they
are defined. User can configure the compilation sequence of multiple blocks in main
loop modules area of an IEC Program by accessing the “IEC Modules Compilation
Sequence Configuration” Dialog.

The programming language for main loop modules can be selected using right click
on the Main Loop Modules node under Logic Modules from the program node of the
Project Navigator.

The programming language can also be selected by using the Program Menu | New
Logic Block or through IEC Editor logic modules toolbar.

Note: SFC programs may only be created as Logic Blocks.

www.imopc.com 429

http://www.imopc.com/

Right Click Options
The right click option allows the user to check for errors, rename, save, print, export
logic module, Move Up In Order, Move Down In Order, Include/Exclude
Compilation or delete the modules.

Import Logic Module Right Click

www.imopc.com 430

http://www.imopc.com/

IEC Modules Compilation Sequence Configuration
"Configure Compilation Sequence" can be accessed either by right clicking on the
Main Loop Modules or right clicking on individual modules as shown below:

Selecting "Configure Compilation Sequence" gets the user to the below displayed
window:

www.imopc.com 431

http://www.imopc.com/

User can change the compilation order of the programs by using either Move Up in
compile order or Move Down in Compile order buttons.

Move Up in Compile Order :- Moves the selected program one step up the
compilation order.
Move Down in Compile Order :- Moves the selected program one step down the
compilation order.

Note:- SFC block compilation order cannot be changed and they always remain last in
the compilation order. But the compilation order of multiple SFC blocks can be
changed within themselves.

User can also include/exclude a logic module in the main loop modules section from
compilation sequence by using Include in Compilation / Exclude from Compilation
options. This option can be selected either through IEC Modules Compilation
Sequence Configuration window or by right clicking on any modules. These options
are as shown below:

www.imopc.com 432

http://www.imopc.com/

Any Module which is excluded from Compilation will have a RED mark indicated on
the module as shown below:

www.imopc.com 433

http://www.imopc.com/

www.imopc.com 434

http://www.imopc.com/

Subroutine modules for IEC programs
Main loop modules | UDFB modules

These blocks are callable from all the other block types. Subroutine modules can have
private and local variables which will be allocated single storage. Hence calling the
block from two different places will operate on the same private and local variables.

The programming language for subroutine modules can be selected using right click
on the Subroutine Modules node under Logic Modules from the program node of the
Project Navigator.

The programming language can also be selected by using the Program Menu | New
Subroutine Block or through IEC Editor logic modules toolbar.

www.imopc.com 435

http://www.imopc.com/

When a subroutine module is created, the same gets listed in the project toolbox under
group 'Project'. These modules can then be dragged and dropped as other function
blocks.

Right Click Options
The right click option allows the user to check for errors, rename, save, print, export
logic module or delete the modules.

Import Logic Module Right Click

www.imopc.com 436

http://www.imopc.com/

www.imopc.com 437

http://www.imopc.com/

UDFB modules for IEC programs
Main loop modules | Subroutine modules

These blocks are callable from all the other block types. UDFB modules can have
private and local variables which will be allocated with unique storage. Hence calling
the blocks from two different places will operate on different private and local
variables.

The programming language for UDFB modules can be selected using right click on
the UDFB Modules node under Logic Modules from the program node of the Project
Navigator.

The programming language can also be selected by using the Program Menu | New
UDFB Block or through IEC Editor logic modules toolbar.

www.imopc.com 438

http://www.imopc.com/

When a UDFB module is created, the same gets listed in the project toolbox under
group 'Project'. These modules can then be dragged and dropped as other function
blocks.

Right Click Options
The right click option allows the user to check for errors, rename, save, print, export
logic module or delete the modules.

www.imopc.com 439

http://www.imopc.com/

Import Logic Module Right Click

www.imopc.com 440

http://www.imopc.com/

www.imopc.com 441

http://www.imopc.com/

Recipes
Recipes Ladder Elements | Recipes Graphics Object

Overview

Recipes allow the user to send or update multiple registers simultaneously. For
example, it may be desired to run a motor at two different settings for two different
applications.

a. Speed of 1000RPM, minimum frequency of 500Hz, acceleration rate of 1000
s/100Hz and deceleration rate of 2000 s/100Hz.

b. Speed of 500RPM minimum frequency of 400Hz, acceleration rate of 500-
s/100Hz and deceleration rate of 1500 s/100Hz.

Recipes enable the user to change all the fields (four in this example) at the same time
without editing each individual field.

A maximum of 250 recipes and 1024 product can be supported. The maximum
number of ingredients that can be supported across all recipes are 250. Recipe space is
limited by the size of Removable Media put in the controller. The recipe function will
require presence of a removable media card to store the recipe data.

If a program having recipe configured is exported, i³ Configurator will create 2 files
namely *.pgm and *.csv. User should copy both these files to Removable Media for
loading in the device.

Also See: Recipes Settings in download options.

www.imopc.com 442

http://www.imopc.com/

Creating a Recipe
1. Open the Create New Recipe Database dialog by selecting Program | Recipes

Editor from the Main Menu.

2. Enter the Recipe Name, File Name, Number of Products and Number of

Ingredients.

When a new recipe is created the following data is required:

Create Recipe Settings

Recipe Name

Used to label the recipe in the editor. It is also used in the
associated graphic elements to identify the required recipe.
Allowed characters are a-z, A-Z, 0-9 and _.

Filename

Indicates the filename (plus path if required) where the data for
the recipe is stored on the removable media card.

Enter up to 8 characters for the File Name. File name must be in
8.3 format with .CSV extension.

Number of Products

Initial number of products to be allocated for the recipe. "The
number of products/ingredients" may be easily changed during
editing by inserting or deleting columns/rows from the recipe
database.

Number of Ingredients

Initial number of ingredients to be allocated for the recipe. "The
number of products/ingredients" may be easily changed during
editing by inserting or deleting columns/rows from the recipe
database.

Clicking on OK opens the Recipe Editor dialog.
Recipe Editor
The Recipe editor dialog is as follows:

www.imopc.com 443

http://www.imopc.com/

Different products are listed across the top of the spreadsheet. Clicking on the product
name will allow editing of the product name. This is the string which will be used to
select a recipe product for loading/saving of the control registers in the i³.

Different ingredients to be loaded are listed in the left most column. Clicking on the
setting name will allow editing of ingredient properties, which include name to be
displayed, the register(s) in which the data is placed and the format in which the data
for that ingredient will be displayed.

The data for the products is contained in the central ‘spreadsheet’ area. This is the
data which is stored on the removable media card.

Recipe Editor

Toolbar Buttons

Create a new Recipe

Delete: Delete currently selected recipe. User is prompted for confirmation

Previous/Next Recipe: Move through the recipes in the program. This is
augmented by the names of all recipes being available for selection in the
Tools menu.

Cut/Copy/Paste: Standard windows functionality. Data is saved to the
clipboard in text format allowing easy transfer to other applications.

Insert/Delete Ingredient: Delete only after confirmation

Insert/Delete Ingredient: Delete only after confirmation

www.imopc.com 444

http://www.imopc.com/

Menu Bar

Editing Ingredient Properties
An ingredient, or field, in the recipe corresponds to a value which will be loaded to a
specified i³ register.

Each ingredient has the following properties:-

Editing Ingredient Settings

Ingredient Name

The ingredient name which will appear in the graphics object for
editing the ingredient can be provided.

www.imopc.com 445

http://www.imopc.com/

Note: i³ can use up to 32-bytes to store the name of the selected
product.

Type Select the data type of the ingredient.

Controller Register Select the i³ register where the data will be loaded. (Register name &
Address)

Display
Format

Select the data format, justification, decimal position etc.

Numeric

Timer Format

AlphaNumeric

Note: The alphanumeric data cannot have comma in it. If comma is
put, it will be replaced with space.

Text Table

www.imopc.com 446

http://www.imopc.com/

Edit/Write
Enable the check box if the value of the ingredient can be edited in
the i³ and provide the maximum and minimum values which are used
when entering the data in i³.

Editing Recipe Data
Double click on the field to be edited. If the data is a bit status it will toggle, otherwise
the Edit Field Contents dialog box will appear. Enter the new data for the field and
press enter or click OK.

Renaming Products
Double click on the record name. When the Enter Product Name dialog box is
displayed enter the new record name, and click OK or press Enter.

Note: i³ can use up to 32-bytes to store the name of the selected product.

Auto Allocate Ingredient Register

Auto Allocate Ingredient Register
Start Ingredient
 Select Start ingredient name for a range from this dropdown.

End Ingredient Select End ingredient name for a range from this dropdown.

www.imopc.com 447

http://www.imopc.com/

Register Required

This displays the number of registers that will be consumed for
items/ingredients selected from start to end ingredients, which
will be equal to number register used for auto allocation. This
filed can not be edited.

Allocate from Starting address of the register for auto allocation.

Editing Current Recipe

This opens the Recipes storage details dialog which allows changes to the recipe name
and file name to be made.

Configuring Product Register
This register is used for storing the selected product of the recipe. The Enable Product
Register checkbox must be checked before Product Register can be used.

Note: To view selected product name or index in the View recipe graphics object, this
option must be configured.

Product Register Settings

Index

Selecting this option will store the Index of the most recently selected product
in the register provided here.

The product can be selected from Load Recipe ladder blocks or Load
Recipegraphics objects.

Note: i³ uses 16-bits to store index of the selected product.

www.imopc.com 448

http://www.imopc.com/

Name

Selecting this option will store the Name of the most recently selected product
in the register provided here.

The product can be selected from Load Recipe ladder blocks or Load Recipe
graphics objects.

Note: i³ can use up to 32-bytes to store the name of the selected product.

www.imopc.com 449

http://www.imopc.com/

Using Setpoints
Extended %R Registers

Setpoints allow registers to be initialized to a known value after a download. The
following is an example of using setpoints:

A timer with a variable setpoint (%R45) is used to control a process. The setpoint
should be approximately 470 milliseconds but it requires some tuning to determine
the exact value. If you just download this program %R45 has a unknown value
because it has not been initialized.

Right click on the timer and choose Add to Setpoints:

Because %R45 is a variable input it will be added to the setpoint list:

Now one can define the initial value for this setpoint, 47 for 470 milliseconds:

www.imopc.com 450

http://www.imopc.com/

When downloading the program select the Set Point Values in the list of items to
download. This will load the register %R45 with a 47 when the download takes
place:

After tuning the timer to the actual process one finds that the optimal value for the
timer is 440 milliseconds. This value can be manual recorded in the setpoint table, or
all the setpoints can be uploaded from the controller into i³ Configurator's memory
for storage when the program is saved:

www.imopc.com 451

http://www.imopc.com/

Editing the Setpoints

Setpoints can be cut, copied, pasted and deleted. Cut, copy and paste works with i³
Configurator or other Windows programs such as Microsoft Excel or Word.

Formatting Setpoints
Setpoints can be formatted to any type that is required. These type include:

www.imopc.com 452

http://www.imopc.com/

BOOLEAN, BINARY-16, HEX-16, INT, UINT, DINT, UDINT, ASCII, and
REAL

Transferring and Verifying Values with the Controller
The values from the setpoint table can be sent to the controller, obtained from the
controller, or verified with the controller using the FILE menu of the setpoint dialog.

Setpoint Tables, Setpoint Values, Uploading and Downloading
A Setpoint Table is a list of registers and data types. Setpoint Values are the
numeric values that are associated with the setpoint.

When you download a program and select to download the setpoint values, i³
Configurator sends commands to change the values of the registers in the controller
as the user has defined in the setpoint table (this is the same as selecting Send Values
to Controller from the setpoint menu). The controller has no record of what registers
were defined as setpoints. This information is stored in the i³ Configurator ladder
program and is saved to disk with the program.

i³ Configurator can download this table and the original values stored in the table for
archival purposes. By selecting the Program -> Download Options menu item the
following dialog will appear.

By checking the Download Setpoint Table option, the table is downloaded to the
controller's nonvolatile storage when the program is downloaded.

www.imopc.com 453

http://www.imopc.com/

When a program is uploaded if this option was checked, the uploaded file will contain
the setpoint table and the original values that were entered into the table. Because the
ladder program or text screens can modify these values in the controller registers, the
values in this uploaded table may not represent the values in the controller. By
selecting Get Values from Controller in the setpoint File menu, the values from the
controller will be uploaded and will replace the original values from the upload.

Printing the Setpoints
The setpoint can be printed in a tabular format when any part of the ladder program is
being printed by selecting the setpoints item on the print setup.

The setpoints can also be printed using the Print button found on the setpoint dialog.

www.imopc.com 454

http://www.imopc.com/

How to Check a Program for Errors
Error and Warning List

Ladder Programs are automatically checked for syntactical errors before they are
downloaded to the controller. The Graphics portion is checked first and then the
Ladder portion is checked.

Manually check a program for errors by selecting Program | Error Check.. from the
Main Menu or selecting the Error Check tool

If no errors occur, then a message box appears:

Otherwise, the Error List is displayed

www.imopc.com 455

http://www.imopc.com/

There are two kinds of listings, ERRORS and WARNINGS.

ERRORS are problems that prevent the program from running, such as unconnected
elements. ERRORS must be corrected before the program can be downloaded.

WARNINGS are problems which can cause difficulty or unexpected operation of the
controller, but are otherwise syntactically correct (i.e., using the same output coil at
two different points in the program). This can be intentional. WARNINGS must be
checked to see that they produce the desired results without unwanted side effects.

To move directly to the offending rung in the Ladder Code program, double click on
the error, or single click on the error and click GOTO.

Error and Warning List
The Error List uses the following Syntax:

[Status]: [Description] : [Location]

Where:

[Status] ERROR or WARN

[Description] gives a short description of the problem

[Location] gives the Row and Column location of the offending element.

Example: Error : Output without an input : Main(A,5)

In some cases, the description gives a location in the line of the offending element.

www.imopc.com 456

http://www.imopc.com/

Print Setup Dialog
This dialog allows the selection of information included on a print-out.

File Summary - This prints the project name, author, full file name and location, date
created, date last modified, i³ Configurator version, and any notes provided.

Ladder - This allows a range of ladder rungs to be printed. The size of the ladder
program can be scaled from 20 to 200 percent. This controls the size of the ladder
printout. Note that the horizontal and vertical size can be adjusted independently. The
text in the ladder program is scaled to match the vertical size only.

Screen Thumbnails - This allows smaller thumbnails of the graphics screens to be
printed for reference. Typically 28 screens fit on an 8.5 x 11 inch piece of paper using
a 4 x 7 grid of screens.

Screens - This allows a range of text or graphics screens to be printed with data field
information.

Text Tables - This allows a range of text tables to be printed.

Network Mapping - This prints the network configuration for the program.

I/O Names - This prints a list of registers and their assigned names.

www.imopc.com 457

http://www.imopc.com/

I/O Used - This prints a list of registers used in this ladder program, their assigned
name, and how they are used in the program.

Set Points - This allows the table of setpoint to be printed.

Security Settings - This allows all the security information to be printed. If this user
is logged on with an administrator password, the actual passwords are printed,
otherwise only the names and privilege levels are printed.

Configuration - This prints the CPU and I/O configuration for this program.

www.imopc.com 458

http://www.imopc.com/

Clearing the Controller Memory
To clear a controller's memory, first select the controller as the target, then select
Controller | Clear Memory from the main menu. The Clear Memory dialog
appears:

The network ID at the top of the box specifies which controller will have it's memory
cleared.

Select the memory areas to be cleared:

User Program -- Clears out the User Program memory area.

Configuration (Network and I/O) - Clears out the Configuration of the network and
I/O areas.

Registers - Clears out all registers

www.imopc.com 459

http://www.imopc.com/

IMO Worldwide Offices

ISO 9001
Registered

Quality
Management 015

IMO South Africa (Pty) Ltd
G16 Centurion Business Park
Montague Gardens
Cape Town 7441
South Africa

Tel: 021 551 1787
Fax: 021 555 0676
Email: info@imopc.co.za
Web: www.imopc.co.za

IMO Pacific Pty Ltd
1/34 Fallon Road
Landsdale
Perth WA 6065
Australia

Tel: 08 9302 5246 (local)
Fax: 08 9303 9908
Email: sales@imopacific.com.au
Web: www.imopacific.com.au

IMO Russia
Office No 4063
9, Zemlyanoy Val, 105064
Moscow
Russia

Tel: 8 800 100 8540 (toll free)
Fax: 8 800 100 8541
Email: sales@imopc.com
Web: www.imopc.com

IMO Canada
Unit 32 - B - North
18 Stratheam Avenue, Brampton
Ontario L6T 4Y2
Canada

Tel: 905 799 9237 (local)
Fax: 905 799 0450
Email: sales@imopc.com
Web: www.imopc.com

IMO Automazione
Via Ponte alle Mosse, 61
50144 Firenze (FI)
Italia

Tel: 800 930 872 (toll free)
Fax: 8000 452 6445
Email: sales@imopc.com
Web: www.imopc.it

IMO Jeambrun Automation SAS
Centre D’Affaires Rocroy
30, Rue de Rocroy
94100 Saint-Maur-Des-Fosses
France

Tel: 0800 912 712 (toll free)
Fax: 0145 134 737
Email: sales@imopc.com
Web: www.imojeambrun.fr

IMO Precision Controls Limited
1000 North Circular Road
Staples Corner
London NW2 7JP
United Kingdom

Tel: 020 8452 6444
Fax: 020 8450 2274
Email: sales@imopc.com
Web: www.imopc.com

IMO UK

IMO Russia

IMO Jeambrun

IMO Automazione

IMO Canada

IMO South Africa

IMO Pacific

http://www.imopc.com/

	Table of Contents
	SAFETY GUIDELINES
	Safety Warnings and Guidelines
	Grounding
	IEC 61131 Logic
	IEC Users Guide
	IEC 61131-3 Programming Environment
	The Main Window
	Declaring Variables
	Program Variables Window
	Attributes of a Variable
	Creating New Variables
	Defining Structures
	Initial Value of a Variable
	Naming a Variable
	Sorting Variables
	Variable Tag and Description
	Variable Data Type and Dimension
	Variable List - Active Grid
	Editing Variables as Text
	Editing Variables as Text
	Editing Variables as Text Using IEC61131-3 Syntax
	Editing Variables as XML Tags
	Editing variables as text in CSV format

	Editing Programs
	Editing Programs
	SFC Editor
	Sequential Function Charts (SFC) Editor
	Using the SFC Toolbar
	Drawing SFC Divergences
	Viewing SFC Charts
	Moving and Copying SFC Charts
	Entering SFC macro-steps
	Renumbering Steps and Transitions
	Entering Actions of a Step
	Entering the Condition of a Transition
	Entering Notes for Steps and Transitions
	Viewing SFC Logic and Secondary Editor Simultaneously

	FBD Editor
	Function Block Diagram (FBD) Editor
	Using the FBD Toolbar
	Drawing FBD Connection Lines
	Selecting FBD Variables and Instances
	Viewing FBD Diagrams
	Moving or Copying FBD Objects
	Inserting FBD Objects on a Line
	Resizing FBD Objects

	LD Editor
	Ladder Diagram (LD) Editor
	Using the LD Toolbar
	Managing Rungs
	Comments in LD Diagrams
	Viewing LD Diagrams
	Moving and Copying LD Items

	ST Editor
	Structured Text (ST) Editor
	ST / IL Syntax Coloring
	Auto Completion of Words
	ST / IL Drag and Drop Features
	Tooltips in the ST Editor

	IL Editor
	Instruction List (IL) Editor
	ST / IL Syntax Coloring
	Auto Completion of Words
	ST / IL Drag and Drop Features
	Tooltips in the IL Editor

	Selecting Function Blocks Using IEC Project Toolbox
	Modifying Function blocks
	Selecting Variables and Instances
	Output Window
	Output Window Details:

	Defines
	Definitions
	Defines Window

	Bookmarks
	Check a Program for Errors in IEC Programs
	Debugging the Application
	Debugging the Application
	Using the Editors in Debug Mode
	Forcing a variable:

	Using Data Watch window - Variable Lists

	Tools
	Finding Elements in IEC modules
	How to search and Replace in IEC Modules

	Languages
	Programming Languages - Reference guide
	Programming Languages
	Programming languages - Overview
	SFC
	Sequential Function Chart (SFC)
	SFC Steps
	SFC Transitions
	SFC Parallel Branches
	SFC Macro Steps
	Jump to a SFC step
	Actions in an SFC Step
	Condition of a SFC Transition
	Execution at Runtime

	Function Block Diagram (FBD)
	LD symbols

	LD
	Ladder Diagram (LD)
	Contacts
	Coils
	Power Rails

	Structured Text (ST)
	Comments
	Expressions
	Statements

	Instruction List (IL)
	Comments
	Data flow
	Evaluation of expressions
	Actions

	Program Organization Units
	Sub-programs

	Data Types
	Variables
	Groups
	Data type and dimension
	Naming a variable
	Attributes of a variable

	Arrays
	Use in ST and IL languages:
	Use in FBD and LD languages:
	Restrictions:

	Constant Expressions
	BOOL: Boolean
	SINT: Small (8 bit) Integer
	USINT / BYTE: Unsigned 8 bit Integer
	INT: 16 bit integer
	UINT / WORD: Unsigned 16 bit integer
	DINT: 32 bit (default) integer
	UDINT / DWORD: Unsigned 32 bit integer
	REAL: Single precision floating point value
	TIME: Time of day
	STRING: Character string
	Examples

	Conditional Compiling
	Basic Operations
	Basic Operations
	Access to Bits of an Integer
	Parenthesis ()
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language

	Calling a Function
	ST Language
	FBD and LD Languages
	IL Language

	Calling a Function Block CAL CALC CALNC CALCN
	ST Language
	FBD and LD Languages
	IL Language

	Calling a Sub-Program
	ST Language
	FBD and LD Languages
	IL Language

	Labels
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language

	Jumps JMP JMPC JMPNC JMPCN
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language

	RETURN RET RETC RETNC RETCN
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language

	IF THEN ELSE ELSIF END_IF
	Syntax
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language

	WHILE DO END_WHILE
	Syntax
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language

	REPEAT UNTIL END_REPEAT
	Syntax
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language

	FOR TO BY END_FOR
	Syntax
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language

	CASE OF ELSE END_CASE
	Syntax
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language

	EXIT
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language

	Function Blocks
	Function Blocks
	Boolean Operations
	Boolean Operations
	AND ANDN &
	Inputs
	Outputs
	Truth table
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language
	See Also

	F_TRIG
	Inputs
	Outputs
	Truth table
	ST Language
	FBD Language
	LD Language
	IL Language
	See also

	Outputs
	Truth table
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language
	See also
	R_TRIG
	Inputs
	Outputs
	Truth table
	ST Language
	FBD Language
	LD Language
	IL Language
	See also

	RS
	Inputs
	Outputs
	Truth table
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language
	See also

	SR
	Inputs
	Outputs
	Truth table
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language
	See also

	XOR XORN
	Inputs
	Outputs
	Truth table
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language
	See also

	S
	Inputs
	Outputs
	Truth table
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language
	See also

	R
	Inputs
	Outputs
	Truth table
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language
	See also

	Arithmetic Operations
	Arithmetic Operations
	* MUL
	Inputs
	Outputs
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language
	See also

	+ ADD
	Inputs
	Outputs
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language
	See also

	Inputs
	Outputs
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language
	See also
	Inputs
	Outputs
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language
	See also

	Standard Operations
	Standard Operations
	Copy 1 Gain
	Inputs
	Outputs
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language
	See also

	Inputs
	Outputs
	Truth table (examples)
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language
	Inputs
	Outputs
	Truth table
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language
	See also

	Comparison Operations
	Comparison Operations
	Inputs
	Outputs
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language
	See also
	Inputs
	Outputs
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language
	See also
	Inputs
	Outputs
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language
	See also
	Inputs
	Outputs
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language
	See also
	Inputs
	Outputs
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language
	See also
	Inputs
	Outputs
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language
	See also
	Inputs
	Outputs
	Remarks
	ST Language
	Example:
	FBD Language
	LD Language
	IL Language

	Mathematical Operations
	Mathematical Operations
	Inputs
	Outputs
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language
	See also
	Inputs
	Outputs
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language
	See also
	Inputs
	Outputs
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language
	See also
	Inputs
	Outputs
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language
	See also
	Inputs
	Outputs
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language
	See also
	Inputs
	Outputs
	ST Language
	FBD Language
	LD Language
	IL Language
	See also
	Inputs
	Outputs
	ST Language
	FBD Language
	LD Language
	IL Language
	See also
	Inputs
	Outputs
	ST Language
	FBD Language
	LD Language
	IL Language
	See also
	Inputs
	Outputs
	ST Language
	FBD Language
	LD Language
	IL Language
	See also
	Inputs
	Outputs
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language
	See also
	Inputs
	Outputs
	ST Language
	FBD Language
	LD Language
	IL Language
	See also
	Inputs
	Outputs
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language
	See also
	Inputs
	Outputs
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language
	Inputs
	Outputs
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language
	See also
	Inputs
	Outputs
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language:
	See also

	Advanced Operations
	Advanced Operations
	Alarm
	Inputs
	Remarks
	1) The Control Block
	2) Special Status Bits
	ST Language
	FBD Language
	LD Language
	IL Language
	See also

	AlarmStamp
	Inputs
	Remarks
	1) The Control Block
	2) Time Stamp Registers
	ST Language
	FBD Language
	LD Language
	IL Language
	See also

	ScaleInt
	Inputs
	Outputs
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language
	See also

	ScaleReal
	Inputs
	Outputs
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language
	See also

	SetClk
	Inputs
	Outputs
	ST Language
	FBD Language
	LD Language
	IL Language

	STP100 Smart Stack Module
	Module Configuration
	COMMAND BITS
	STATUS BITS
	COMMAND DATA OUTPUTS
	INDEXED MOVES
	ISSUING COMMANDS

	StepperMove
	Inputs
	Remarks
	ST Language
	FBD Language
	Ladder Language
	IL Language
	See also

	StepperMoveInd
	ST Language
	Ladder Language
	IL Language
	See also

	Key Press
	Inputs
	Outputs
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language

	LoadRcpByIndex
	Inputs
	Outputs
	FBD Language
	LD Language
	IL Language

	LoadRcpByStr
	Inputs
	ST Language
	FBD Language
	LD Language
	IL Language

	LoadRcpByStr2
	Inputs
	Outputs
	ST Language
	FBD Language
	LD Language
	IL Language

	SaveRcpByIndex
	Inputs
	Outputs
	ST Language
	FBD Language
	LD Language
	IL Language

	SaveRcpByStr
	Inputs
	Outputs
	ST Language
	FBD Language
	LD Language
	IL Language

	SaveRcpByStr2
	Inputs
	Outputs
	ST Language
	FBD Language
	LD Language
	IL Language

	Register Operations
	Register Operations
	Inputs
	Outputs
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language
	See also
	Inputs
	Outputs
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language
	See also
	Inputs
	Outputs
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language
	See also
	Inputs
	Outputs
	Diagram
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language
	See also
	ROR
	Inputs
	Outputs
	Diagram
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language
	See also

	Inputs
	Outputs
	Diagram
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language
	See also
	SHR
	Inputs
	Outputs
	Diagram
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language
	See also

	Inputs
	Outputs
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language
	See also
	BitSet
	Inputs
	Outputs
	ST Language
	FBD Language
	LD Language
	IL Language
	See also

	Inputs
	Outputs
	ST Language
	FBD Language
	LD Language
	IL Language
	See also
	BitClear
	Inputs
	Outputs
	ST Language
	FBD Language
	LD Language
	IL Language
	See also

	Conversion Operations
	Conversion Operations
	Inputs
	Outputs
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language
	See also
	Inputs
	Outputs
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language
	See also
	Inputs
	Outputs
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language
	See also
	Inputs
	Outputs
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language
	See also
	Inputs
	Outputs
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language
	See also
	Inputs
	Outputs
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language
	See also
	Inputs
	Outputs
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language
	See also

	String Operations
	String Operations
	Inputs
	Outputs
	Remarks
	LD Language
	See also
	Inputs
	Outputs
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language
	See also
	Inputs
	Outputs
	Remarks
	FBD Language
	LD Language
	IL Language
	See also
	Inputs
	Outputs
	Remarks
	LD Language
	See also
	Inputs
	Outputs
	Remarks
	LD Language
	IL Language
	See also
	Inputs
	Outputs
	Remarks
	LD Language
	IL Language
	See also
	Inputs
	Outputs
	Remarks
	LD Language
	See also
	StringLen
	Inputs
	Outputs
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language
	See also

	Inputs
	Outputs
	Remarks
	See also
	Outputs
	Remarks
	See also

	CANOpen Operations
	CANOpen Operations
	SDO Read
	Inputs
	Outputs
	ST Language
	FBD Language
	LD Language
	IL Language
	See also

	SDO Write
	Inputs
	Outputs
	ST Language
	FBD Language
	LD Language
	IL Language
	See also

	Get Local ID
	ST Language
	FBD Language
	LD Language
	IL Language
	See also

	Get NMT State
	Inputs
	Outputs
	ST Language
	FBD Language
	LD Language
	IL Language
	See also

	Set NMT State
	Inputs
	Outputs
	ST Language
	FBD Language
	LD Language
	IL Language
	See also

	Receive Emergency Message From a Given Device
	Inputs
	Outputs
	ST Language
	FBD Language
	LD Language
	IL Language
	See also

	Receive Emergency Message From Any Device
	Inputs
	Outputs
	ST Language
	FBD Language
	LD Language
	IL Language
	See also

	Error_Details
	Kernel Error:
	SDO Error:
	Error register Bit details
	Emergency Codes
	See also

	Screen Operations
	Screen Operations
	Inputs
	Outputs
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language
	See also
	DisplayScreen
	Input
	Output
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language
	See also

	Serial Operations
	Serial Operations
	Inputs
	Outputs
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language
	See also
	Inputs
	Outputs
	Remarks
	2) Status bit assignment:
	ST Language
	FBD Language
	LD Language
	IL Language
	See also
	Inputs
	Outputs
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language
	See also
	Inputs
	Outputs
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language
	See also
	Inputs
	Outputs
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language
	See also
	Inputs
	Outputs
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language
	See also
	Inputs
	Outputs
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language
	See also
	Inputs
	Outputs
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language
	Operands:
	The following values can be fed to different Parameters of the block:
	3. #Parity : Parity can be configured as 0- 4
	4. #Data : Data bit can be 5 to 8
	5. #Stop : Stop bits cab be configured as 1 or 2
	6. #Handshake : Handshake can be configured as 0 to 5
	7. #Protocol : Protocol can be configured as 0 to 5
	8. #Mode : Mode can be configured as 0 to 2
	Note:
	See also
	Inputs
	Outputs
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language
	See also
	Inputs
	Outputs
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language
	See also

	Removable Media Operations
	Removable Media Operations
	Inputs
	Outputs
	Remarks
	1) FILENAME
	2) Status Values Returned by Removable Media Function Blocks
	3) System Registers used with Removable Media
	ST Language
	FBD Language
	LD Language
	IL Language
	See also
	Inputs
	Outputs
	Remarks
	1) OLDNAME
	2) Status Values Returned by Removable Media Function Blocks
	ST Language
	FBD Language
	LD Language
	IL Language
	See also
	Inputs
	Outputs
	Remarks
	1) FILENAME
	2) Status Values Returned by Removable Media Function Blocks
	ST Language
	FBD Language
	LD Language
	IL Language
	See also
	Inputs
	Outputs
	Remarks
	1) FILENAME
	2) Status Values Returned by Removable Media Function Blocks
	ST Language
	FBD Language
	LD Language
	IL Language
	See also
	Inputs
	Outputs
	Remarks
	1) FILENAME
	2) COL/ROW
	3) Status Values Returned by Removable Media Function Blocks
	ST Language
	FBD Language
	LD Language
	IL Language
	See also
	Inputs
	Outputs
	Rename
	ST Language
	FBD Language
	LD Language
	IL Language
	See also
	Copy_CF
	Inputs
	Outputs
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language
	See also

	Counter Operations
	Counter Operations
	Inputs
	Outputs
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language
	See also
	Inputs
	Outputs
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language
	See also

	Time and Date Operations
	Time and Date Operations
	Time and Date Operations
	Configuring Elements
	Power Flow through the Element
	Time of Day
	STLanguage
	FBD Language
	LD Language
	IL Language
	Days of Week
	ST Language
	FBD Language
	LD Language
	IL Language
	Days of Month
	ST Language
	FBD Language
	IL Language
	Months of Year
	ST Language
	FBD Language
	LD Language
	IL Language
	Start and End Year
	ST Language
	FBD Language
	LD Language
	IL Language

	Move Operations
	Move Operations
	FILL
	Inputs
	ST Language
	FBD Language
	LD Language
	IL Language
	See also

	Inputs
	ST Language
	FBD Language
	LD Language
	IL Language
	See also
	Inputs
	ST Language
	FBD Language
	LD Language
	IL Language
	See also
	Move Block
	Inputs
	ST Language
	FBD Language
	LD Language
	IL Language
	See also

	Inputs
	Outputs
	Truth table
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language

	PID Operations
	PID Operations
	GETPIDMAN
	Inputs
	Output
	Remarks
	ST Language
	FBD Language
	Ladder Language
	IL Language
	See Also:

	Remarks
	Register Usage
	ST Language
	FBD Language
	LD Language
	IL Language
	See also
	Inputs
	Outputs
	Remarks
	Register Usage
	FBD Language
	LD Language
	LT Language
	See also
	Inputs
	Outputs
	Remarks
	Register Usage
	ST Language
	FBD Language
	LD Language
	IL Language
	See also
	Inputs
	Outputs
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language
	See also
	Inputs
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language
	See also
	Inputs
	ST Language
	IL Language

	Network Operations
	Network Operations
	Inputs
	Outputs
	FBD Language
	LD Language
	See also
	ST Language
	FBD Language
	LD Language
	IL Language
	See also
	Inputs
	FBD Language
	LD Language
	See also
	Inputs
	FBD Language
	LD Language
	IL Language
	See also
	Inputs
	Outputs
	ST Language
	FBD Language
	LD Language
	IL Language
	See also
	Inputs
	Outputs
	FBD Language
	LD Language
	IL Language
	See also
	Inputs
	Outputs
	FBD Language
	LD Language
	IL Language
	See also
	Inputs
	ST Language
	FBD Language
	LD Language
	See also
	Net Put Wordex
	Inputs
	ST Language
	FBD Language
	LD Language
	IL Language
	See also

	Floating PID Operations
	Floating PID Operations
	Inputs
	Remarks
	PID_IND_AUTO_R
	Inputs
	Outputs
	Remarks
	Register Usage
	ST Language
	FBD Language
	LD Language
	IL Language
	See also

	PID_ISA_R
	Inputs
	Outputs
	Remarks
	Register Usage
	ST Language
	FBD Language
	LD Language
	IL Language
	See also

	Outputs
	Remarks
	LD Language
	IL Language
	See also
	Inputs
	Remarks
	ST Language
	FBD Language
	LD Language
	IL Language
	See also
	Inputs
	ST Language

	Timer Counter Operations
	Timer Counter Operations
	Inputs
	Outputs
	Remarks
	ST Language
	or
	FBD Language
	or
	LD Language
	or
	IL Language
	or
	See also
	Inputs
	Outputs
	Remarks
	ST Language
	or
	FBD Language
	or
	LD Language
	or
	IL Language
	OR
	See also
	Inputs
	Outputs
	Remarks
	ST Language
	or
	FBD Language
	or
	LD Language
	or
	IL Language
	OR
	See also

	Logic Modules
	IEC Modules
	Main loop modules for IEC programs
	Right Click Options
	Import Logic Module Right Click
	IEC Modules Compilation Sequence Configuration

	Subroutine modules for IEC programs
	Right Click Options
	Import Logic Module Right Click

	UDFB modules for IEC programs
	Right Click Options
	Import Logic Module Right Click

	Recipes
	Overview
	Creating a Recipe
	Recipe Editor
	Recipe Editor
	Toolbar Buttons
	Menu Bar

	Editing Ingredient Properties
	Editing Recipe Data
	Renaming Products
	Auto Allocate Ingredient Register
	Editing Current Recipe
	Configuring Product Register

	Using Setpoints
	Editing the Setpoints
	Formatting Setpoints
	Transferring and Verifying Values with the Controller
	Setpoint Tables, Setpoint Values, Uploading and Downloading
	Printing the Setpoints

	How to Check a Program for Errors
	Error and Warning List

	Print Setup Dialog
	Clearing the Controller Memory

